Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties

In this study, we analyze the relations between radiation properties and sensitivity of optical nanoantennas and their shape and design parameters using nanocircuit concepts. We apply these findings to optimize the sensitivity and bandwidth of printed plasmonic nanoantennas for their potential use in optical communications and label-free biosensing applications. In comparison to conventional plasmonic optical sensors, which mainly rely on localized surface plasmons, our design rules suggest that optical nanoantennas may provide enhanced sensitivity for biomedical applications, and our analytical solutions based on their equivalent nanocircuit model may provide an efficient tool for their design optimization. Several numerical simulations are presented to verify utility of this design method, providing excellent agreement between numerical and analytical results.

[1]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[2]  Vladimir M. Shalaev,et al.  Plasmonic nanoantenna arrays for the visible , 2008 .

[3]  Nader Engheta,et al.  Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and∕or double-positive metamaterial layers , 2005 .

[4]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.

[5]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[6]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[7]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[8]  G M Edelman,et al.  The covalent and three-dimensional structure of concanavalin A. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[10]  Jean-Jacques Greffet,et al.  Nanoantennas for Light Emission , 2005, Science.

[11]  Annemarie Pucci,et al.  Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. , 2008, Physical review letters.

[12]  M. Garcia-Parajo,et al.  Optical antennas focus in on biology , 2008 .

[13]  Antao Chen,et al.  Enhanced Evanescent Confinement in Multiple-Slot Waveguides and Its Application in Biochemical Sensing , 2009, IEEE Photonics Journal.

[14]  S. Choulis,et al.  Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices , 2006 .

[15]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[16]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[17]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[18]  Reinhard Guckenberger,et al.  High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. , 2004, Physical review letters.

[19]  G M Edelman,et al.  The covalent and three-dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides. , 1975, The Journal of biological chemistry.

[20]  N. Engheta,et al.  Optical nanoswitch: an engineered plasmonic nanoparticle with extreme parameters and giant anisotropy , 2009 .

[21]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[22]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[23]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[24]  A. Koenderink Plasmon nanoparticle array waveguides for single photon and single plasmon sources. , 2009, Nano letters.

[25]  T. Chinowsky,et al.  Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films , 1998 .

[26]  Andrea Alù,et al.  Wireless at the nanoscale: optical interconnects using matched nanoantennas. , 2010, Physical review letters.

[27]  H. Atwater,et al.  Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. , 2006, Nano letters (Print).

[28]  Alexandra Boltasseva,et al.  Near-field excitation of nanoantenna resonance. , 2007, Optics express.

[29]  Andrea Alù,et al.  On Certain Design Criteria for Nanoantennas in the Visible , 2009 .

[30]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[31]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[32]  Nader Engheta,et al.  Hertzian plasmonic nanodimer as an efficient optical nanoantenna , 2008 .

[33]  Alpan Bek,et al.  Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. , 2008, Nano letters.

[34]  Parallel, series, and intermediate interconnections of optical nanocircuit elements. 2. Nanocircuit and physical interpretation , 2007, 0707.1003.

[35]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[36]  Dipole and bowtie nano-antenna for carbon nanotube (CNT) based infrared sensors , 2009, 2009 IEEE Nanotechnology Materials and Devices Conference.

[37]  Vladimir M. Shalaev,et al.  Enhanced localized fluorescence in plasmonic nanoantennae , 2008 .