Log-concavity in planar random walks

We prove log-concavity of exit probabilities of lattice random walks in certain planar regions.

[1]  Andrew Chi-Chih Yao,et al.  Some Monotonicity Properties of Partial Orders , 1979, SIAM J. Algebraic Discret. Methods.

[2]  G. Parisi Brownian motion , 2005, Nature.

[3]  Sergey Fomin,et al.  Loop-erased walks and total positivity , 2000, math/0004083.

[4]  P. Mischel Lost - and found - in translation. , 2011, The Journal of clinical investigation.

[5]  Gregory F. Lawler,et al.  Random Walk: A Modern Introduction , 2010 .

[6]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[7]  Mireille Bousquet-Melou,et al.  Counting Walks in the Quarter Plane , 2017, 1708.06192.

[8]  P. Brändén Unimodality, log-concavity, real-rootedness and beyond , 2015 .

[9]  Greta Panova,et al.  The cross-product conjecture for width two posets , 2021 .

[10]  June Huh,et al.  COMBINATORIAL APPLICATIONS OF THE HODGE–RIEMANN RELATIONS , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).

[11]  Marni Mishna,et al.  Walks with small steps in the quarter plane , 2008, 0810.4387.

[12]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[13]  Sakinah,et al.  Vol. , 2020, New Medit.

[14]  Richard P. Stanley,et al.  Two Combinatorial Applications of the Aleksandrov-Fenchel Inequalities , 1981, J. Comb. Theory, Ser. A.

[15]  Bruce E. Sagan,et al.  Inductive and injective proofs of log concavity results , 1988, Discret. Math..

[16]  Peter C. Fishburn,et al.  On Unimodality for Linear Extensions of Partial Orders , 1980, SIAM J. Algebraic Discret. Methods.

[17]  Alexander Postnikov,et al.  Total positivity, Grassmannians, and networks , 2006 .

[18]  F. Brenti,et al.  Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .

[19]  Greta Panova,et al.  Extensions of the Kahn--Saks inequality for posets of width two , 2021 .