Asymptotics of multivariate sequences in the presence of a lacuna

We explain a discontinuous drop in the exponential growth rate for certain multivariate generating functions at a critical parameter value, in even dimensions $d \geq 4$. This result depends on computations in the homology of the algebraic variety where the generating function has a pole. These computations are similar to, and inspired by, a thread of research in applications of complex algebraic geometry to hyperbolic PDEs, going back to Leray, Petrowski, Atiyah, Bott and Garding. As a consequence, we give a topological explanation for certain asymptotic phenomenon appearing in the combinatorics and number theory literature. Furthermore, we show how to combine topological methods with symbolic algebraic computation to determine explicitly the dominant asymptotics for such multivariate generating functions. This in turn enables the rigorous determination of integer coefficients in the Morse-Smale complex, which are difficult to determine using direct geometric methods.

[1]  Mark C. Wilson,et al.  Analytic Combinatorics in Several Variables , 2013 .

[2]  Marc Mezzarobba,et al.  Rigorous Multiple-Precision Evaluation of D-Finite Functions in SageMath , 2016, ArXiv.

[3]  Doron Zeilberger,et al.  On Elementary Methods in Positivity Theory , 1983 .

[4]  L. Lipshitz,et al.  The diagonal of a D-finite power series is D-finite , 1988 .

[5]  Marc Mezzarobba,et al.  Truncation Bounds for Differentially Finite Series , 2019, Annales Henri Lebesgue.

[6]  J. M. Boardman Singularties of differentiable maps , 1967 .

[7]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences II: Multiple Points of the Singular Variety , 2004, Combinatorics, Probability and Computing.

[8]  Fredrik Johansson,et al.  Ore Polynomials in Sage , 2013, Computer Algebra and Polynomials.

[9]  Mikael Passare,et al.  Laurent determinants and arrangements of hyperplane amoebas , 2000 .

[10]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[11]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[12]  J. W. Bruce,et al.  STRATIFIED MORSE THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete. (3) 14) , 1989 .

[13]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences: I. Smooth Points of the Singular Variety , 2002, J. Comb. Theory, Ser. A.

[14]  Stephen Melczer,et al.  Diagonal asymptotics for symmetric rational functions via ACSV , 2018, AofA.

[15]  Bruno Salvy,et al.  Effective bounds for P-recursive sequences , 2009, J. Symb. Comput..

[16]  D. V. Chudnovsky,et al.  On expansion of algebraic functions in power and Puiseux series, I , 1986, J. Complex..

[17]  Vladimir I. Arnold,et al.  Singularities of Differentiable Maps, Volume 2 , 2012 .

[18]  J. Milnor Singular points of complex hypersurfaces , 1968 .

[19]  Stephen Melczer,et al.  Critical points at infinity for analytic combinatorics , 2019, ArXiv.

[20]  Yuliy Baryshnikov,et al.  Asymptotics of multivariate sequences, part III: Quadratic points , 2008 .

[21]  Pierre Lairez,et al.  Computing periods of rational integrals , 2014, Math. Comput..

[22]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[23]  Frédéric Pham,et al.  Singularities of integrals: Homology, hyperfunctions and microlocal analysis , 2011 .

[24]  M. Atiyah,et al.  Lacunas for hyperbolic differential operators with constant coefficients I , 1970 .

[25]  Joris van der Hoeven,et al.  Fast Evaluation of Holonomic Functions Near and in Regular Singularities , 2001, J. Symb. Comput..

[26]  R. Ho Algebraic Topology , 2022 .