MLFMA-FFT PARALLEL ALGORITHM FOR THE SO- LUTION OF LARGE-SCALE PROBLEMS IN ELECTRO- MAGNETICS (INVITED PAPER)

MLFMA-FFT PARALLEL ALGORITHM FOR THE SO-LUTION OF LARGE-SCALE PROBLEMS IN ELECTRO-MAGNETICS (INVITED PAPER)J. M. TaboadaDepartment Tecnolog¶‡as de los Computadores y de lasComunicaciones, Escuela Polit¶ecnicaUniversidad de ExtremaduraC¶aceres 10071, SpainM. G. Araujo¶ and J. M. B¶ertoloDepartment Teor¶‡a do Sinal e Comunicaci¶ons, E.T.S.E.Telecomunicaci¶onUniversidade de VigoVigo (Pontevedra) 36310, SpainL. LandesaDepartment Tecnolog¶‡as de los Computadores y de lasComunicaciones, Escuela Polit¶ecnicaUniversidad de ExtremaduraC¶aceres 10071, SpainF. Obelleiro and J. L. RodriguezDepartment Teor¶‡a do Sinal e Comunicaci¶ons, E.T.S.E.Telecomunicaci¶onUniversidade de VigoVigo (Pontevedra) 36310, SpainAbstract|An e–cient hybrid MPI/OpenMP parallel implementationof an innovative approach that combines the Fast Fourier Transform(FFT) and Multilevel Fast Multipole Algorithm (MLFMA) has beensuccessfully used to solve an electromagnetic problem involving 620millions of unknowns. The MLFMA-FFT method can deal withextremely large problems due to its high scalability and its reducedcomputational complexity. The former is provided by the use of the

[1]  Jiming Song,et al.  Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces , 1997 .

[2]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[3]  G. Sylvand Performance of a parallel implementation of the FMM for electromagnetics applications , 2003 .

[4]  Ö. Ergül,et al.  Fast and accurate solutions of extremely large integral-equation problems discretised with tens of millions of unknowns , 2007 .

[5]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[6]  Ozgur Ergul,et al.  Fast and accurate solutions of extremely large integral-equation problems discretised with tens of millions of unknowns , 2007 .

[7]  L. Landesa,et al.  High Scalability FMM-FFT Electromagnetic Solver for Supercomputer Systems , 2009, IEEE Antennas and Propagation Magazine.

[8]  L. Landesa,et al.  High scalability multipole method for the analysis of hundreds of millions of unknowns , 2009, 2009 3rd European Conference on Antennas and Propagation.

[9]  J.L. Volakis,et al.  Massively Parallel Fast Multipole Method Solutions of Large Electromagnetic Scattering Problems , 2007, IEEE Transactions on Antennas and Propagation.

[10]  S. Velamparambil,et al.  10 million unknowns: is it that big? [computational electromagnetics] , 2003, IEEE Antennas and Propagation Magazine.

[11]  J.M. Song,et al.  ScaleME: a portable scaleable multipole engine for electromagnetic and acoustic integral equation solvers , 1998, IEEE Antennas and Propagation Society International Symposium. 1998 Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.98CH36.

[12]  Luis Landesa,et al.  SUPERCOMPUTER AWARE APPROACH FOR THE SOLUTION OF CHALLENGING ELECTROMAGNETIC PROBLEMS , 2010 .

[13]  John F. Shaeffer,et al.  Radar Cross Section , 2004 .

[14]  W.C. Chew,et al.  Solving large scale electromagnetic problems using a Linux cluster and parallel MLFMA , 1999, IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010).

[15]  Weng Cho Chew,et al.  Scalable electromagnetic scattering computations , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[16]  Jiming Song,et al.  Multilevel fast‐multipole algorithm for solving combined field integral equations of electromagnetic scattering , 1995 .

[17]  L. Landesa,et al.  Analysis of 0.5 billion unknowns using a parallel FMM-FFT solver , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[18]  Luis Landesa,et al.  Solution of very large integral‐equation problems with single‐level FMM , 2009 .

[19]  L. Gurel,et al.  A Hierarchical Partitioning Strategy for an Efficient Parallelization of the Multilevel Fast Multipole Algorithm , 2009, IEEE Transactions on Antennas and Propagation.

[20]  Ozgur Ergul,et al.  Parallel-MLFMA Solution of CFIE Discretized with Tens of Millions of Unknowns , 2007 .

[21]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[22]  Jiming Song,et al.  Fast Illinois solver code (FISC) , 1998 .

[23]  L. Gurel,et al.  Efficient Parallelization of the Multilevel Fast Multipole Algorithm for the Solution of Large-Scale Scattering Problems , 2008, IEEE Transactions on Antennas and Propagation.

[24]  Xiao-Min Pan,et al.  A Sophisticated Parallel MLFMA for Scattering by Extremely Large Targets [EM Programmer's Notebook] , 2008, IEEE Antennas and Propagation Magazine.

[25]  Ramani Duraiswami,et al.  Data Structures, Optimal Choice of Parameters, and Complexity Results for Generalized Multilevel Fast Multipole Methods in $d$ Dimensions , 2003 .

[26]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[27]  S. Velamparambil,et al.  Analysis and performance of a distributed memory multilevel fast multipole algorithm , 2005, IEEE Transactions on Antennas and Propagation.