Breaking the Doping Limit in Silicon by Deep Impurities

N-type doping in Si by shallow impurities, such as P, As and Sb, exhibits an intrinsic limit due to the Fermi-level pinning via defect complexes at high doping concentrations. Here we demonstrate that doping Si with the chalcogen Te by non-equilibrium processing, a deep double donor, can exceed this limit and yield higher electron concentrations. In contrast to shallow impurities, both the interstitial Te fraction decreases with increasing doping concentration and substitutional Te dimers become the dominant configuration as effective donors, leading to a non-saturating carrier concentration as well as to an insulator-to-metal transition. First-principle calculations reveal that the Te dimers possess the lowest formation energy and donate two electrons per dimer to the conduction band. These results provide novel insight into physics of deep impurities and lead to a possible solution for the ultra-high electron concentration needed in today's Si-based nanoelectronics.

[1]  Lars Hultman,et al.  Characterization of highly Sb-doped Si using high-resolution x-ray diffraction and transmission electron microscopy , 1994 .

[2]  W. Fichtner,et al.  Arsenic deactivation in Si: Electronic structure and charge states of vacancy-impurity clusters , 2003 .

[3]  J. Woicik,et al.  Correlation of local structure and electrical activation in arsenic ultrashallow junctions in silicon , 2008 .

[4]  A M , ETHOD OF MEASURING THE RESISTIVITY AND HALL ' COEFFICIENT ON LAMELLAE OF ARBITRARY SHAPE , 2014 .

[5]  Nevill Mott,et al.  Metal-Insulator Transition , 1968 .

[6]  Tomasz Wojtowicz,et al.  Effect of the location of Mn sites in ferromagnetic GaMnAs on its Curie temperature , 2002 .

[7]  G. Ghibaudo,et al.  Tensile strain in arsenic heavily-doped Si , 2007 .

[8]  M. Mayer SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA , 1999 .

[9]  Allain,et al.  Extended x-ray-absorption fine-structure study of the local atomic structure in As+ heavily implanted silicon. , 1992, Physical review. B, Condensed matter.

[10]  K. Saarinen,et al.  Formation of vacancy-impurity complexes by kinetic processes in highly As-doped Si. , 2002, Physical review letters.

[11]  A. Satta,et al.  Ab initio structures of As{sub m}V complexes and the simulation of Rutherford backscattering channeling spectra in heavily As-doped crystalline silicon , 2005 .

[12]  Deren Yang,et al.  Trap Assisted Bulk Silicon Photodetector with High Photoconductive Gain, Low Noise, and Fast Response by Ag Hyperdoping , 2018 .

[13]  S. Solmi,et al.  High concentration diffusivity and clustering of arsenic and phosphorus in silicon , 1998 .

[14]  M. Fanciulli,et al.  Confinement effects and hyperfine structure in se doped silicon nanowires. , 2011, Nano letters.

[15]  T. Sigmon,et al.  The solid solubility and thermal behavior of metastable concentrations of As in Si , 1980 .

[16]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[17]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[18]  J. Allain,et al.  Backscattering spectrometry and ion channeling studies of heavily implanted As+ in silicon , 1994 .

[19]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[20]  M. Jaraíz,et al.  Modeling arsenic deactivation through arsenic-vacancy clusters using an atomistic kinetic Monte Carlo approach , 2005 .

[21]  M. Mayer,et al.  SIMNRA user's guide , 1997 .

[22]  C. H. Park,et al.  FERMI-LEVEL-PINNING DEFECTS IN HIGHLY N-DOPED SILICON , 1997 .

[23]  M. Puska,et al.  Identification of vacancy-impurity complexes in highly n-type Si , 1999 .

[24]  R. Schaub,et al.  Donor states in tellurium-doped silicon , 1984 .

[25]  A. Pasquarello,et al.  Self-compensation due to point defects in Mg-doped GaN , 2016, 1607.08353.

[26]  H. Gossmann,et al.  Junctions for Deep Sub-100 NM MOS: How Far will Ion Implantation Take Us? , 2000 .

[27]  M. Nicolet,et al.  Principles and applications of ion beam techniques for the analysis of solids and thin films , 1973 .

[28]  Mechanisms of arsenic clustering in silicon , 2005, cond-mat/0512653.

[29]  P. P. Pronko,et al.  Effects of pulsed ruby‐laser annealing on As and Sb implanted silicon , 1979 .

[30]  Ramamoorthy,et al.  Complex dynamical phenomena in heavily arsenic doped silicon. , 1996, Physical review letters.

[31]  Zhang,et al.  Electrical conductivity of metallic Si:B near the metal-insulator transition. , 1992, Physical review. B, Condensed matter.

[32]  W. Fichtner,et al.  Highly n-doped silicon: Deactivating defects of donors , 2004 .

[33]  R. Chang,et al.  Activation and deactivation of phosphorus in silicon-on-insulator substrates , 2016 .

[34]  M. Severi,et al.  Electrical Properties of Thermally and Laser Annealed Polycrystalline Silicon Films Heavily Doped with Arsenic and Phosphorus , 1982 .

[35]  J. Grossman,et al.  Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin. , 2011, Physical review letters.

[36]  Irene Aguilera,et al.  Formation of a reliable intermediate band in Si heavily coimplanted with chalcogens (S, Se, Te) and group III elements (B, Al) , 2010 .

[37]  Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization , 2007, IEEE Transactions on Electron Devices.

[38]  Ulrich Wahl,et al.  Lattice location and thermal stability of implanted nickel in silicon studied by on-line emission channeling , 2014 .

[39]  H. Gossmann,et al.  Vacancy-impurity complexes in highly Sb-doped Si grown by molecular beam epitaxy. , 2005, Physical review letters.

[40]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[41]  M. Helm,et al.  Realizing the insulator-to-metal transition in Se-hyperdoped Si via non-equilibrium material processing , 2017, 1707.09207.

[42]  M. Bianconi,et al.  Atomistic simulation of ion channeling in heavily doped Si:As , 2005 .

[43]  E. Mazur,et al.  Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon , 2013 .

[44]  A. Larsen,et al.  The nature of electrically inactive antimony in silicon , 1986 .

[45]  Fang Liu,et al.  Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy , 2015, Scientific Reports.

[46]  H. S. Luftman,et al.  Doping of Si thin films by low‐temperature molecular beam epitaxy , 1993 .

[47]  P. H. Citrin,et al.  Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si , 2002, Nature.

[48]  S. T. Picraux,et al.  Lattice Location by Channeling Angular Distributions: Bi Implanted in Si , 1972 .

[49]  Pandey,et al.  Annealing of heavily arsenic-doped silicon: Electrical deactivation and a new defect complex. , 1988, Physical review letters.

[50]  P. Griffin,et al.  Vacancy generation resulting from electrical deactivation of arsenic , 1995 .

[51]  K. Temst,et al.  Lattice Location of Mg in GaN: A Fresh Look at Doping Limitations. , 2017, Physical review letters.

[52]  J. Pfister,et al.  Dopant redistribution in heavily doped silicon: Confirmation of the validity of the vacancy‐percolation model , 1989 .

[53]  W. Chu,et al.  Channeling study of the formation of arsenic clusters in silicon , 2008 .

[54]  Xue Mao,et al.  Structural and optoelectronic properties of selenium‐doped silicon formed using picosecond pulsed laser mixing , 2012 .

[55]  J. Pfister,et al.  Diffusion of arsenic in silicon: Validity of the percolation model , 1983 .

[56]  N. Mott,et al.  Metal-insulator transitions , 1973 .

[57]  H. Schneider,et al.  Extended Infrared Photoresponse inTe-HyperdopedSiat Room Temperature , 2018, Physical Review Applied.

[58]  S. T. Picraux,et al.  Materials Analysis by Ion Channeling: Submicron Crystallography , 2012 .

[59]  D. Vanderbilt,et al.  Optimally smooth norm-conserving pseudopotentials. , 1985, Physical review. B, Condensed matter.

[60]  P. Packan,et al.  Pushing the Limits , 1999, Science.

[61]  Eric Mazur,et al.  Insulator-to-metal transition in sulfur-doped silicon. , 2011, Physical review letters.

[62]  K. Short,et al.  Metastable doping behavior in antimony‐implanted (100) silicon , 1982 .

[63]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.