The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview

[1]  William L. Woodley,et al.  Deep convective clouds with sustained supercooled liquid water down to -37.5 °C , 2000, Nature.

[2]  Bruce F. Houghton,et al.  The encyclopedia of volcanoes , 1999 .

[3]  L. Vezzoli,et al.  Plinian pumice fall deposit of the Campanian Ignimbrite eruption (Phlegraean Fields, Italy) , 1999 .

[4]  B. Houghton,et al.  Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand , 1999 .

[5]  J. Wilkin,et al.  Abyssal circulation around New Zealand—a comparison between observations and a global circulation model , 1999 .

[6]  E. Stadlbauer,et al.  Stratigraphy of the Kos Plateau Tuff: product of a major Quaternary explosive rhyolitic eruption in the eastern Aegean, Greece , 1999 .

[7]  R. Cas,et al.  Rhyolitic fallout and pyroclastic density current deposits from a phreatoplinian eruption in the eastern Aegean Sea, Greece , 1998 .

[8]  E. Bard Geochemical and geophysical implications of the radiocarbon calibration * * This paper is the first , 1998 .

[9]  R. S. J. Sparks,et al.  Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number , 1998 .

[10]  C. Newhall,et al.  Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines , 1998 .

[11]  T. Caldwell,et al.  Gravity, magnetic and seismic surveys of the caldera complex, Lake Taupo, North Island, New Zealand , 1998 .

[12]  J. Cole,et al.  Lithic types in ignimbrites as a guide to the evolution of a caldera complex, Taupo volcanic centre, New Zealand , 1998 .

[13]  P. Lipman,et al.  Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry , 1997 .

[14]  G. Valentine,et al.  Turbulent transport and deposition of the Ito pyroclastic flow: Determinations using anisotropy of magnetic susceptibility , 1997 .

[15]  S. Carey Influence of convective sedimentation on the formation of widespread tephra fall layers in the deep sea , 1997 .

[16]  Colin J. N. Wilson,et al.  The Bishop Tuff: New Insights From Eruptive Stratigraphy , 1997, The Journal of Geology.

[17]  P. Aleotti,et al.  Interaction between caldera collapse and eruptive dynamics during the Campanian Ignimbrite eruption, Phlegraean Fields, Italy , 1996 .

[18]  A. Woods,et al.  On the formation of eruption columns following explosive mixing of magma and surface‐water , 1996 .

[19]  B. Houghton,et al.  Vent migration and changing eruptive style during the 1800a Taupo eruption: new evidence from the Hatepe and Rotongaio phreatoplinian ashes , 1995 .

[20]  B. Houghton,et al.  An exceptionally widespread ignimbrite with implications for pyroclastic flow emplacement , 1995, Nature.

[21]  Michael McWilliams,et al.  Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review , 1995 .

[22]  S. Blake,et al.  An outline geochemistry of rhyolite eruptives from Taupo volcanic centre, New Zealand , 1995 .

[23]  H. Neil,et al.  Correlation, dispersal, and preservation of the Kawakawa Tephra and other late Quaternary tephra layers in the Southwest Pacific Ocean , 1995 .

[24]  H. Schmincke,et al.  Models for the origin of accretionary lapilli , 1995 .

[25]  B. Houghton,et al.  Chronology and dynamics of a large silicic magmatic system: Central Taupo Volcanic Zone, New Zealand , 1995 .

[26]  S. Self,et al.  Dilute gravity current and rain-flushed ash deposits in the 1.8 ka Hatepe Plinian deposit, Taupo, New Zealand , 1994 .

[27]  Stephen Lane,et al.  The origin of accretionary lapilli , 1994 .

[28]  W. Rose Comment on ‘another look at the calculation of fallout tephra volumes’ by Judy Fierstein and Manuel Nathenson , 1993 .

[29]  G. Heiken,et al.  Mobility of a large-volume pyroclastic flow — emplacement of the Campanian ignimbrite, Italy , 1993 .

[30]  Colin J. N. Wilson,et al.  Stratigraphy, chronology, styles and dynamics of late Quaternary eruptions from Taupo volcano, New Zealand , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[31]  W. Hildreth,et al.  The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska , 1992 .

[32]  M. Branney,et al.  A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite , 1992 .

[33]  M. Rosi A model for the formation of vesiculated tuff by the coalescence of accretionary lapilli , 1992 .

[34]  W. Hildreth,et al.  Volcán Quizapu, Chilean Andes , 1992 .

[35]  B. Houghton,et al.  The 1976–1982 Strombolian and phreatomagmatic eruptions of White Island, New Zealand: eruptive and depositional mechanisms at a ‘wet’ volcano , 1991 .

[36]  C. Wilson Ignimbrite morphology and the effects of erosion: a New Zealand case study , 1991 .

[37]  R. Sparks,et al.  Charge measurements on particle fallout from a volcanic plume , 1991, Nature.

[38]  H. Schmincke,et al.  The lateral facies of ignimbrites at Laacher See volcano , 1990 .

[39]  D. Pyle The thickness, volume and grainsize of tephra fall deposits , 1989 .

[40]  V. R. Switsur,et al.  A new 14C age for the Oruanui (Wairakei) eruption, New Zealand , 1988, Geological Magazine.

[41]  William I. Rose,et al.  Dispersal of ash in the great Toba eruption, 75 ka , 1987 .

[42]  S. Self,et al.  Quaternary silicic pyroclastic deposits of Atitlán Caldera, Guatemala , 1987 .

[43]  S. Self,et al.  Wairakei Formation, New Zealand: Stratigraphy and correlation , 1987 .

[44]  R. Sparks,et al.  Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns , 1986 .

[45]  Colin J. N. Wilson,et al.  The Taupo eruption, New Zealand I. General aspects , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[46]  C. Wilson The Taupo eruption, New Zealand. II. The Taupo Ignimbrite , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[47]  B. Houghton,et al.  Caldera Volcanoes of the Taupo Volcanic Zone, New Zealand , 1984 .

[48]  S. Aramaki Formation of the Aira Caldera, southern Kyushu, ∼22,000 years ago , 1984 .

[49]  G. Walker Ignimbrite types and ignimbrite problems , 1983 .

[50]  S. Self Large-scale phreatomagmatic silicic volcanism: A case study from New Zealand , 1983 .

[51]  H. Sigurdsson,et al.  Computer simulation of transport and deposition of the campanian Y-5 ash , 1983 .

[52]  R. S. J. Sparks,et al.  Bimodal grain size distribution and secondary thickening in air-fall ash layers , 1983, Nature.

[53]  R. Sparks,et al.  Fall-out and deposition of volcanic ash during the 1979 explosive eruption of the soufriere of St. Vincent , 1982 .

[54]  Haraldur Sigurdsson,et al.  Influence of particle aggregation on deposition of distal tephra from the MAy 18, 1980, eruption of Mount St. Helens volcano , 1982 .

[55]  R. K. Sorem Volcanic ash clusters: Tephra rafts and scavengers , 1982 .

[56]  S. Self,et al.  The ground layer of the taupo ignimbrite: A striking example of sedimentation from a pyroclastic flow , 1981 .

[57]  G. Walker Characteristics of two phreatoplinian ashes, and their water-flushed origin , 1981 .

[58]  G. Walker,et al.  An ignimbrite veneer deposit: The trail-marker of a pyroclastic flow , 1981 .

[59]  R. Sparks,et al.  The pyroclastic deposits of the 1875 eruption of Askja, Iceland , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[60]  I. Nairn Some Studies of the Geology, Volcanic History, and Geothermal Resources of the Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand , 1981 .

[61]  R. Sparks,et al.  The volcanological significance of deep-sea ash layers associated with ignimbrites , 1980, Geological Magazine.

[62]  G. Walker A volcanic ash generated by explosions where ignimbrite entered the sea , 1979, Nature.

[63]  R. Sparks,et al.  Duration of large-magnitude explosive eruptions deduced from graded bedding in deep-sea ash layers , 1979 .

[64]  W. Rose,et al.  Geochemistry of the Los Chocoyos Ash, Quezaltenango Valley, Guatemala , 1979 .

[65]  W. Rose,et al.  Geochemical correlation of genetically related rhyolitic ash-flow and air-fall ashes, central and western Guatemala and the equatorial Pacific , 1979 .

[66]  S. Self,et al.  Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water , 1978 .

[67]  R. Sparks,et al.  Volume and extent of the Minoan tephra from Santorini Volcano: new evidence from deep-sea sediment cores , 1978, Nature.

[68]  C. G. Vucetich,et al.  Late pleistocene tephrostratigraphy in the Taupo district, New Zealand , 1976 .

[69]  C. G. Vucetich,et al.  Proposed definition of the Kawakawa Tephra, the c. 20 000-years-B.P. marker horizon in the New Zealand region , 1976 .

[70]  V. Lorenz Vesiculated tuffs and associated features , 1974 .

[71]  B. Kohn,et al.  Ashes, turbidites, and rates of sedimentation on the continental slope off Hawkes Bay , 1973 .

[72]  S. Self,et al.  Products of Ignimbrite Eruptions , 1973 .

[73]  I. Nairn Rotoehu ash and the Rotoiti Breccia Formation, Taupo Volcanic zone, New Zealand , 1972 .

[74]  G. Walker,et al.  Grain-Size Characteristics of Pyroclastic Deposits , 1971, The Journal of Geology.

[75]  C. G. Vucetich,et al.  Stratigraphy and chronology of late pleistocene volcanic ash beds in Central North Island, New Zealand , 1969 .

[76]  R. V. Fisher Mechanism of deposition from pyroclastic flows , 1966 .

[77]  R. Folk,et al.  Brazos River bar [Texas]; a study in the significance of grain size parameters , 1957 .