Chromosome Painting in Gymnotus carapo “Catalão” (Gymnotiformes, Teleostei): Dynamics of Chromosomal Rearrangements in Cryptic Species

The genus Gymnotus is a large monophyletic group of freshwater weakly-electric fishes, with wide distribution in Central and South America. It has 46 valid species divided into six subgenera (Gymnotus, Tijax, Tigre, Lamontianus, Tigrinus and Pantherus) with large chromosome plasticity and diploid numbers (2n) ranging from 34 to 54. Within this rich diversity, there is controversy about whether Gymnotus (Gymnotus) carapo species is a single widespread species or a complex of cryptic species. Cytogenetic studies show different diploid numbers for G. carapo species, ranging from 40 to 54 chromosomes with varied karyotypes found even between populations sharing the same 2n. Whole chromosome painting has been used in studies on fish species and recently has been used for tracking the chromosomal evolution of Gymnotus and assisting in its cytotaxonomy. Comparative genomic mapping using chromosome painting has shown more complex rearrangements in Gymnotus carapo than shown in previous studies by classical cytogenetics. These studies demonstrate that multiple chromosome pairs are involved in its chromosomal reorganization, suggesting the presence of a complex of cryptic species due to a post zygotic barrier. In the present study, metaphase chromosomes of G. carapo occidentalis “catalão” (GCC, 2n = 40, 30m/sm+10st/a) from the Catalão Lake, Amazonas, Brazil, were hybridized with whole chromosome probes derived from the chromosomes of G. carapo (GCA, 2n = 42, 30m/sm+12st/a). The results reveal chromosome rearrangements and a high number of repetitive DNA sites. Of the 12 pairs of G. carapo chromosomes that could be individually identified (GCA 1–3, 6, 7, 9, 14, 16 and 18–21), 8 pairs (GCA 1, 2, 6, 7, 9, 14, 20, 21) had homeology conserved in GCC. Of the GCA pairs that are grouped (GCA [4, 8], [5, 17], [10, 11] and [12, 13, 15]), most kept the number of signals in GCC (GCA [5, 17], [10, 11] and [12, 13, 15]). The remaining chromosomes are rearranged in the GCC karyotype. Analysis of both populations of the G. carapo cytotypes shows extensive karyotype reorganization. Along with previous studies, this suggests that the different cytotypes analyzed here may represent different species and supports the hypothesis that G. carapo is not a single widespread species, but a group of cryptic species.

[1]  J. Albert,et al.  Diversification of Neotropical Freshwater Fishes , 2020 .

[2]  J. Albert,et al.  Two New Species of Gymnotus (Gymnotiformes: Gymnotidae) from Brazil and Historical Biogeography of the Subgenus Lamontianus , 2020, Copeia.

[3]  J. Albert,et al.  Phylogenetic revision of Gymnotidae (Teleostei: Gymnotiformes), with descriptions of six subgenera , 2019, PloS one.

[4]  P. Unmack,et al.  Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes, Osteoglossidae): Insight from Comparative Cytogenomics , 2019, International journal of molecular sciences.

[5]  E. Feldberg,et al.  Karyotypic Diversity and Evolutionary Trends in Neotropical Electric Fish of the Genus Gymnotus (Gymnotiformes: Gymnotidae). , 2019, Zebrafish.

[6]  V. Trifonov,et al.  Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH) , 2019, Scientific Reports.

[7]  J. Albert,et al.  The changing course of the Amazon River in the Neogene: center stage for Neotropical diversification , 2018 .

[8]  J. C. Pieczarka,et al.  Particular Chromosomal Distribution of Microsatellites in Five Species of the Genus Gymnotus (Teleostei, Gymnotiformes). , 2018, Zebrafish.

[9]  W. Crampton,et al.  Fish biogeography in the “Lost World” of the Guiana Shield: Phylogeography of the weakly electric knifefish Gymnotus carapo (Teleostei: Gymnotidae) , 2018 .

[10]  M. Ferguson-Smith,et al.  Extensive Karyotype Reorganization in the Fish Gymnotus arapaima (Gymnotiformes, Gymnotidae) Highlighted by Zoo-FISH Analysis , 2018, Front. Genet..

[11]  T. Ezaz,et al.  Early Stages of XY Sex Chromosomes Differentiation in the Fish Hoplias malabaricus (Characiformes, Erythrinidae) Revealed by DNA Repeats Accumulation , 2017, Current genomics.

[12]  V. Trifonov,et al.  Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes) , 2018, Chromosoma.

[13]  T. Liehr,et al.  First Chromosomal Analysis in Hepsetidae (Actinopterygii, Characiformes): Insights into Relationship between African and Neotropical Fish Groups , 2017, Front. Genet..

[14]  D. Rosa,et al.  Evolutionary Relationships and Cytotaxonomy Considerations in the Genus Pyrrhulina (Characiformes, Lebiasinidae) , 2017 .

[15]  J. C. Pieczarka,et al.  Gymnotus coatesi (Gymnotiformes): A Case of Colocation of Multiple Sites of 18S rDNA with Telomeric Sequences. , 2017, Zebrafish.

[16]  C. F. Yano,et al.  Chromosomal Evolution in Lower Vertebrates: Sex Chromosomes in Neotropical Fishes , 2017, Genes.

[17]  J. Albert,et al.  Revision of the polytypic electric fish Gymnotus carapo (Gymnotiformes, Teleostei), with descriptions of seven subspecies , 2017 .

[18]  V. Trifonov,et al.  Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae) , 2016, Heredity.

[19]  E. Feldberg,et al.  Evolutionary Dynamics of 5S rDNA and Recurrent Association of Transposable Elements in Electric Fish of the Family Gymnotidae (Gymnotiformes): The Case of Gymnotus mamiraua , 2016, Cytogenetic and Genome Research.

[20]  Fábio Porto-Foresti,et al.  Uncovering the Ancestry of B Chromosomes in Moenkhausia sanctaefilomenae (Teleostei, Characidae) , 2016, PloS one.

[21]  J. Albert,et al.  Model-based total evidence phylogeny of Neotropical electric knifefishes (Teleostei, Gymnotiformes). , 2016, Molecular phylogenetics and evolution.

[22]  CardosoAdauto Lima,et al.  Chromosomal Variability Between Populations of Electrophorus electricus Gill, 1864 (Pisces: Gymnotiformes: Gymnotidae) , 2015 .

[23]  F. Foresti,et al.  Whole chromosome painting of B chromosomes of the red-eye tetra Moenkhausia sanctaefilomenae (Teleostei, Characidae) , 2015, Comparative cytogenetics.

[24]  D. Diniz,et al.  A unique sex chromosome system in the knifefish Gymnotus bahianus with inferences about chromosomal evolution of Gymnotidae. , 2015, The Journal of heredity.

[25]  Maelin da Silva Análise biogeográfica do gênero gymnotus (gymnotidae, gymnotiformes), por meio de marcadores cariotípicos e moleculares , 2015 .

[26]  Emma S. Lehmberg Biogeography of the weakly electric knifefish Gymnotus carapo (Teleostei: Gymnotidae) in the Guianas , 2015 .

[27]  FeldbergEliana,et al.  New approach data in electric fish (Teleostei: Gymnotus): sex chromosome evolution and repetitive DNA. , 2014 .

[28]  F. Foresti,et al.  Comparative Chromosome Mapping of U2 snRNA and 5S rRNA Genes in Gymnotus Species (Gymnotiformes, Gymnotidae): Evolutionary Dynamics and Sex Chromosome Linkage in G. pantanal , 2014, Cytogenetic and Genome Research.

[29]  M. Ferguson-Smith,et al.  Chromosome Painting Reveals Multiple Rearrangements between Gymnotus capanema and Gymnotus carapo (Gymnotidae, Gymnotiformes) , 2013, Cytogenetic and Genome Research.

[30]  M. Ferguson-Smith,et al.  Are NORs Always Located on Homeologous Chromosomes? A FISH Investigation with rDNA and Whole Chromosome Probes in Gymnotus Fishes (Gymnotiformes) , 2013, PloS one.

[31]  W. Crampton,et al.  Gymnotus capanema, a new species of electric knife fish (Gymnotiformes, Gymnotidae) from eastern Amazonia, with comments on an unusual karyotype. , 2012, Journal of fish biology.

[32]  R. H. Lowe-McConnell,et al.  Historical Biogeography of Neotropical Freshwater Fishes , 2012 .

[33]  J. C. Pieczarka,et al.  Chromosomal and electric signal diversity in three sympatric electric knifefish species (Gymnotus, Gymnotidae) from the Central Amazon Floodplain , 2012, Reviews in Fish Biology and Fisheries.

[34]  Kristen Brochu Molecular Phylogenetics of the Neotropical Electric Knifefish Genus Gymnotus (Gymnotidae, Teleostei): Biogeography and Signal Evolution of the Trans-Andean Species , 2011 .

[35]  J. Camacho,et al.  New insights on the origin of B chromosomes in Astyanax scabripinnis obtained by chromosome painting and FISH , 2011, Genetica.

[36]  F. Foresti,et al.  Karyotypic diversity in four species of the genus Gymnotus Linnaeus, 1758 (Teleostei, Gymnotiformes, Gymnotidae): physical mapping of ribosomal genes and telomeric sequences , 2011, Comparative cytogenetics.

[37]  V. P. Margarido,et al.  Physical Mapping of 5S rDNA in Two Species of Knifefishes: Gymnotus pantanal and Gymnotus paraguensis (Gymnotiformes) , 2011, Cytogenetic and Genome Research.

[38]  Jochen Schöngart,et al.  INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA , 2010 .

[39]  J. Albert,et al.  Phylogeny, biogeography, and electric signal evolution of Neotropical knifefishes of the genus Gymnotus (Osteichthyes: Gymnotidae). , 2010, Molecular phylogenetics and evolution.

[40]  M. Ferguson-Smith,et al.  Multiple rearrangements in cryptic species of electric knifefish, Gymnotus carapo (Gymnotidae, Gymnotiformes) revealed by chromosome painting , 2010, BMC Genetics.

[41]  A. Levan,et al.  NOMENCLATURE FOR CENTROMERIC POSITION ON CHROMOSOMES , 2009 .

[42]  F. L. Claro Gymnotus carapo e Gymnotus sylvius (Teleostei:Gymnotidae): uma abordagem citogenético-molecular , 2008 .

[43]  W. Crampton,et al.  Chromosomal evidence for a putative cryptic species in the Gymnotus carapo species-complex (Gymnotiformes, Gymnotidae) , 2008, BMC Genetics.

[44]  M. Collares-Pereira,et al.  Chromosome studies of European cyprinid fishes: interspecific homology of leuciscine cytotaxonomic marker—the largest subtelocentric chromosome pair as revealed by cross-species painting , 2008, Chromosome Research.

[45]  Benedito P. F. Braga,et al.  Pacto federativo e gestão de águas , 2008 .

[46]  A. Akama,et al.  Cytogenetic characterization of the strongly electric Amazonian eel, Electrophorus electricus (Teleostei, Gymnotiformes), from the Brazilian rivers Amazon and Araguaia , 2008 .

[47]  V. P. Margarido,et al.  Cytogenetic analysis of three sympatric Gymnotus (Gymnotiformes, Gymnotidae) species verifies invasive species in the Upper Paraná River basin, Brazil , 2007 .

[48]  W. Crampton,et al.  Differences in karyotype between two sympatric species of Gymnotus (Gymnotiformes: Gymnotidae) from the eastern amazon of Brazil , 2007 .

[49]  J. Albert,et al.  Diversity and Phylogeny of Neotropical Electric Fishes (Gymnotiformes) , 2005 .

[50]  N. Carter,et al.  A comparative study of karyotypes of muntjacs by chromosome painting , 1995, Chromosoma.

[51]  L. F. Almeida-Toledo,et al.  High intraspecific karyological conservation in four species of Gymnotus (Pisces: Gymnotiformes) from Southeastern Brazilian basins , 1998 .

[52]  M. King Species Evolution: The Role of Chromosome Change , 1993 .

[53]  F. Foresti,et al.  Chromosome Studies in Gymnotus Carapo and Gymnotus Sp. (Pisces, Gymnotidae) , 1984 .