High H2 adsorption by coordination-framework materials.

[1]  C. Serre,et al.  A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. , 2006, Chemical communications.

[2]  A. Fletcher,et al.  Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials. , 2006, The journal of physical chemistry. B.

[3]  Daofeng Sun,et al.  An interweaving MOF with high hydrogen uptake. , 2006, Journal of the American Chemical Society.

[4]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[5]  C. Serre,et al.  Investigation of acid sites in a zeotypic giant pores chromium(III) carboxylate. , 2006, Journal of the American Chemical Society.

[6]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[7]  Y. Gogotsi,et al.  Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. , 2005, Journal of the American Chemical Society.

[8]  Omar M Yaghi,et al.  Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering. , 2005, Journal of the American Chemical Society.

[9]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[10]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[11]  Hyunuk Kim,et al.  Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. , 2005, Chemistry.

[12]  A. Fletcher,et al.  Hydrogen adsorption on functionalized nanoporous activated carbons. , 2005, The journal of physical chemistry. B.

[13]  Hideki Tanaka,et al.  Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns. , 2005, Journal of the American Chemical Society.

[14]  Omar M Yaghi,et al.  Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. , 2005, Journal of the American Chemical Society.

[15]  J. Long,et al.  Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). , 2005, Journal of the American Chemical Society.

[16]  K. Lillerud,et al.  Liquid hydrogen in protonic chabazite. , 2005, Journal of the American Chemical Society.

[17]  O. Yaghi,et al.  Metal-organic frameworks based on trigonal prismatic building blocks and the new "acs" topology. , 2005, Inorganic chemistry.

[18]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[19]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[20]  Wenbin Lin,et al.  Highly interpenetrated metal-organic frameworks for hydrogen storage. , 2004, Angewandte Chemie.

[21]  G. Kearley,et al.  Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. , 2003, Chemistry.

[22]  Paul A. Anderson,et al.  Hydrogen adsorption in zeolites a, x, y and rho , 2003 .

[23]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[24]  K. S. Dhathathreyan,et al.  Hydrogen storage in carbon nanotubes and related materials , 2003 .

[25]  Andreas Züttel,et al.  Hydrogen storage in carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[26]  Anthony L. Spek,et al.  Journal of , 1993 .

[27]  Tzimas Evangelos,et al.  Hydrogen Storage: State-of-the-Art and Future Perspective. , 2003 .

[28]  Louis Schlapbach,et al.  Hydrogen as a Fuel and Its Storage for Mobility and Transport , 2002 .

[29]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[30]  P. G. Rasmussen,et al.  1,4-Benzenedicarboxylate derivatives as links in the design of paddle-wheel units and metal–organic frameworks , 2001 .

[31]  K. D. de Jong,et al.  Hydrogen storage using physisorption – materials demands , 2001 .

[32]  M. Antov,et al.  Maximal extent of an isothermal reversible gas-phase reaction in single- and double-membrane reactors; direct thermal splitting of water , 2001 .

[33]  Mohamed Eddaoudi,et al.  Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties , 2000 .

[34]  Peter C. Eklund,et al.  Hydrogen Adsorption in Carbon Materials , 1999 .

[35]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[36]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[37]  E. C. D. Lara,et al.  Adsorption and coadsorption of molecular hydrogen isotopes in zeolites. 1. Isotherms of H2, HD, and D2 in NaA by thermomicrogravimetry , 1998 .

[38]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[39]  F. Trouw,et al.  Adsorption of Hydrogen in Ca-Exchanged Na-A Zeolites Probed by Inelastic Neutron Scattering Spectroscopy , 1996 .

[40]  R. Yaris,et al.  Quantum Treatment of the Physical Adsorption of Isotopic Species , 1962 .

[41]  A. Itterbeek,et al.  Measurements on the adsorption of light and heavy hydrogen on charcoal between 90°K and 17°K , 1939 .