Novel frameworks for creating robust multi-objective benchmark problems

Robust optimization deals with considering different types of uncertainties during the optimization process in order to obtain reliable solutions, a critical issue when solving real problems. Multiple objectives are another vital aspect of real problems that should be considered during optimization. In order to benchmark the performance of different meta-heuristics, test problems are essential, as the literature shows. Despite the significant number of studies in developing multi-objective test problems, there is currently neither study on the suitability of the current robust multi-objective benchmark problems, nor standard frameworks to create them. This motivates our attempts to investigate the features of the current robust test problems and propose three novel frameworks to generate various robust multi-objective test problems with alterable parameters. As case studies, Robust Multi-Objective Particle Swarm Optimization (RMOPSO), Robust Non-dominated Sorting Genetic Algorithm (RNSGA-II), Robust Multiobjective Evolutionary Algorithm Based on Decomposition (RMOEA/D), Robust Two Local Best Multi-objective Particle Swarm Optimization (R2LB-MOPSO), and Robust Decomposition-Based Multi-objective Evolutionary Algorithm with an Ensemble of Neighborhood Sizes (RENS-MOEA/D) are benchmarked on the proposed test problems. The results show that the proposed frameworks are able to generate robust multi-objective test problems with different adjustable characteristics and levels of difficulty. In addition, the results show that the test problems generated by the proposed frameworks can provide very challenging test beds for effectively benchmarking the performance of robust meta-heuristics.

[1]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[2]  António Gaspar-Cunha,et al.  Evolutionary robustness analysis for multi-objective optimization: benchmark problems , 2013, Structural and Multidisciplinary Optimization.

[3]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[4]  Xin Yao,et al.  Decomposition-Based Memetic Algorithm for Multiobjective Capacitated Arc Routing Problem , 2011, IEEE Transactions on Evolutionary Computation.

[5]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[6]  Kalyanmoy Deb,et al.  Reliability-Based Optimization Using Evolutionary Algorithms , 2009, IEEE Transactions on Evolutionary Computation.

[7]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[8]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[9]  Fang Liu,et al.  A Novel Immune Clonal Algorithm for MO Problems , 2012, IEEE Transactions on Evolutionary Computation.

[10]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[11]  Kalyanmoy Deb,et al.  Multi-objective Optimization , 2014 .

[12]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[13]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[14]  Jürgen Branke,et al.  Creating Robust Solutions by Means of Evolutionary Algorithms , 1998, PPSN.

[15]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[16]  H. Ishibuchi,et al.  MOGA: multi-objective genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[17]  Licheng Jiao,et al.  A multi-population cooperative coevolutionary algorithm for multi-objective capacitated arc routing problem , 2014, Inf. Sci..

[18]  DebKalyanmoy Multi-objective genetic algorithms , 1999 .

[19]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[20]  Christian Fonteix,et al.  Multicriteria optimization using a genetic algorithm for determining a Pareto set , 1996, Int. J. Syst. Sci..

[21]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[22]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[23]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[24]  Kalyanmoy Deb,et al.  Dynamic Multiobjective Optimization Problems: Test Cases, Approximation, and Applications , 2003, EMO.

[25]  Carlos M. Fonseca,et al.  Evolutionary Multi-Objective Robust Optimization , 2008 .

[26]  Konstantinos G. Margaritis,et al.  On benchmarking functions for genetic algorithms , 2001, Int. J. Comput. Math..

[27]  Günter Rudolph,et al.  Evolutionary Optimization of Dynamic Multiobjective Functions , 2006 .

[28]  Andries Petrus Engelbrecht,et al.  Benchmarks for dynamic multi-objective optimisation , 2013, 2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE).

[29]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[30]  Carlos Cruz,et al.  Optimization in dynamic environments: a survey on problems, methods and measures , 2011, Soft Comput..

[31]  Jürgen Branke,et al.  Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation , 2006, IEEE Transactions on Evolutionary Computation.

[32]  Kalyanmoy Deb,et al.  Reliability-Based Multi-objective Optimization Using Evolutionary Algorithms , 2007, EMO.

[33]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[34]  David E. Goldberg,et al.  Linkage Identification by Non-monotonicity Detection for Overlapping Functions , 1999, Evolutionary Computation.

[35]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[36]  Xin Yao,et al.  Benchmark Generator for CEC'2009 Competition on Dynamic Optimization , 2008 .

[37]  Marco Laumanns,et al.  A Spatial Predator-Prey Approach to Multi-objective Optimization: A Preliminary Study , 1998, PPSN.

[38]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[39]  Manuel Valenzuela-Rendón,et al.  A Non-Generational Genetic Algorithm for Multiobjective Optimization , 1997, ICGA.

[40]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[41]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[42]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[43]  Ponnuthurai Nagaratnam Suganthan,et al.  Two-lbests based multi-objective particle swarm optimizer , 2011 .

[44]  Kalyanmoy Deb,et al.  Searching for Robust Pareto-Optimal Solutions in Multi-objective Optimization , 2005, EMO.

[45]  Andrew Lewis,et al.  S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization , 2013, Swarm Evol. Comput..

[46]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[47]  Bernhard Sendhoff,et al.  On Test Functions for Evolutionary Multi-objective Optimization , 2004, PPSN.

[48]  S. Azarm,et al.  Multi-objective robust optimization using a sensitivity region concept , 2005 .

[49]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[50]  Kalyanmoy Deb,et al.  Multi-objective test problems, linkages, and evolutionary methodologies , 2006, GECCO.

[51]  Kay Chen Tan,et al.  An investigation on noise-induced features in robust evolutionary multi-objective optimization , 2010, Expert Syst. Appl..

[52]  Jia Wang,et al.  An Improved Decomposition-Based Memetic Algorithm for Multi-Objective Capacitated Arc Routing Problem , 2014, Appl. Soft Comput..

[53]  Bernhard Sendhoff,et al.  Constructing Dynamic Optimization Test Problems Using the Multi-objective Optimization Concept , 2004, EvoWorkshops.

[54]  Kalyanmoy Deb,et al.  Reliability-based optimization for multiple constraints with evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[55]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[56]  Jing J. Liang,et al.  Novel composition test functions for numerical global optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[57]  Masahiro Tanaka,et al.  GA-based decision support system for multicriteria optimization , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[58]  Mohammad Ali Abido,et al.  Two-level of nondominated solutions approach to multiobjective particle swarm optimization , 2007, GECCO '07.

[59]  Qingfu Zhang,et al.  Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes , 2012, IEEE Transactions on Evolutionary Computation.

[60]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[61]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.