Applications of robust synchronization to communication systems

In this work, using chaotic systems, we study the role of synchronization on codification and decodification of messages. We first present a general result that is useful to prove uniform dessipativeness for nonautonomous systems of ordinary differential equations. Then some theorems are established to give sufficient conditions to obtain synchronization of coupled systems. The above results are applied to some specfic coupled systems, namely, coupled Lorenz systems, coupled Duffing's equations, coupled Chua's systems, etc., showing how to code and decode message using chaotic systems. One of our main results is to obtain the robustness of the synchronization with respect to parameter variation.

[1]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[2]  T. Carroll,et al.  Synchronizing nonautonomous chaotic circuits , 1993 .

[3]  L. Chua,et al.  Communication Systems via Chaotic Signals from a Reconstruction Viewpoint , 1997 .

[4]  Roy,et al.  Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. , 1992, Physical review letters.

[5]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Cuomo,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[7]  Ruggeri,et al.  Path-integral solution of the telegrapher equation: An application to the tunneling time determination. , 1992, Physical review letters.

[8]  Newton G. Bretas,et al.  Uniform Invariance Principle and Synchronization. Robustness with Respect to Parameter Variation , 2001 .

[9]  Tosio Kato Perturbation theory for linear operators , 1966 .

[10]  F. V. Vleck,et al.  Stability and Asymptotic Behavior of Differential Equations , 1965 .

[11]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[12]  H. Amann,et al.  Ordinary Differential Equations: An Introduction to Nonlinear Analysis , 1990 .

[13]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[14]  Hildebrando M. Rodrigues,et al.  Upper Semicontinuity of Attractors and Synchronization , 1998 .

[15]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[16]  Hildebrando M. Rodrigues,et al.  Abstract methods for synchronization and applications , 1996 .

[17]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[18]  C. Tresser,et al.  Resynchronizing dynamical systems , 1997 .

[19]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[20]  Roy,et al.  Tracking unstable steady states: Extending the stability regime of a multimode laser system. , 1992, Physical review letters.

[21]  M. Kreĭn,et al.  Stability of Solutions of Differential Equations in Banach Spaces , 1974 .

[22]  Roy,et al.  Coherence and phase dynamics of spatially coupled solid-state lasers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[23]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[24]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[25]  Alan V. Oppenheim,et al.  Chaotic signals and systems for communications , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[26]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[27]  Dmitry E. Postnov,et al.  SYNCHRONIZATION OF CHAOS , 1992 .

[28]  Leon O. Chua,et al.  On Chaotic Synchronization in a Linear Array of Chua's Circuits , 1993, J. Circuits Syst. Comput..

[29]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[30]  Newton G. Bretas,et al.  On the invariance principle: generalizations and applications to synchronization , 2000 .

[31]  Hildebrando M. Rodrigues,et al.  Uniform Ultimate Boundedness and Synchronization for Nonautonomous Equations , 1994 .

[32]  Leon O. Chua,et al.  Chaos Synchronization in Chua's Circuit , 1993, J. Circuits Syst. Comput..

[33]  H. Amann Ordinary Differential Equations , 1990 .