Loss-tolerant measurement-device-independent quantum random number generation

Quantum random number generators (QRNGs) output genuine random numbers based upon the uncertainty principle. A QRNG contains two parts in general—a randomness source and a readout detector. How to remove detector imperfections has been one of the most important questions in practical randomness generation. We propose a simple solution, measurement-device-independent QRNG, which not only removes all detector side channels but is robust against losses. In contrast to previous fully device-independent QRNGs, our scheme does not require high detector efficiency or nonlocality tests. Simulations show that our protocol can be implemented efficiently with a practical coherent state laser and other standard optical components. The security analysis of our QRNG consists mainly of two parts: measurement tomography and randomness quantification, where several new techniques are developed to characterize the randomness associated with a positive-operator valued measure.

[1]  J. Skaar,et al.  Effects of detector efficiency mismatch on security of quantum cryptosystems , 2005, quant-ph/0511032.

[2]  R. Dong,et al.  A generator for unique quantum random numbers based on vacuum states , 2010 .

[3]  Ping Xu,et al.  Implementation of a measurement-device-independent entanglement witness. , 2014, Physical review letters.

[4]  He Xu,et al.  Postprocessing for quantum random number generators: entropy evaluation and randomness extraction , 2012, ArXiv.

[5]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[6]  R. G. Beausoleil,et al.  Secure self-calibrating quantum random-bit generator , 2007 .

[7]  Hugo Zbinden,et al.  Self-testing quantum random number generator. , 2014, Physical review letters.

[8]  Jens Eisert,et al.  Tomography of quantum detectors , 2009 .

[9]  Donald E. Eastlake,et al.  Randomness Requirements for Security , 2005, RFC.

[10]  Luis L. Sánchez-Soto,et al.  COMPLETE CHARACTERIZATION OF ARBITRARY QUANTUM MEASUREMENT PROCESSES , 1999 .

[11]  Alessandro Trifiletti,et al.  A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card IC , 2003, IEEE Trans. Computers.

[12]  Matthias Christandl,et al.  Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.

[13]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[14]  Nicolas Brunner,et al.  Semi-device-independent security of one-way quantum key distribution , 2011, 1103.4105.

[15]  Hoi-Kwong Lo Getting something out of nothing , 2005, Quantum Inf. Comput..

[16]  Xiongfeng Ma,et al.  Practical issues in quantum-key-distribution postprocessing , 2009, 0910.0312.

[17]  Xiongfeng Ma,et al.  Security proof of quantum key distribution with detection efficiency mismatch , 2008, Quantum Inf. Comput..

[18]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[19]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[20]  H. Weinfurter,et al.  High speed optical quantum random number generation. , 2010, Optics express.

[21]  Stefano Pironio,et al.  Violation of local realism versus detection efficiency , 2003 .

[22]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[23]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[24]  Xiongfeng Ma,et al.  Intrinsic randomness as a measure of quantum coherence , 2015, 1505.04032.

[25]  Xiongfeng Ma Quantum cryptography: theory and practice , 2008 .

[26]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[27]  Jeroen van de Graaf,et al.  Security of Quantum Key Distribution against All Collective Attacks , 2002, Algorithmica.

[28]  Giacomo Mauro D'Ariano,et al.  Quantum calibration of measurement instrumentation. , 2004, Physical review letters.

[29]  Hitoshi Inamori,et al.  Security of Practical Time-Reversed EPR Quantum Key Distribution , 2002, Algorithmica.

[30]  Nicolas Gisin,et al.  Measurement-device-independent entanglement witnesses for all entangled quantum states. , 2012, Physical review letters.

[31]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[32]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[33]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[34]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[35]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[36]  Andrew Chi-Chih Yao,et al.  Quantum cryptography with imperfect apparatus , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[37]  Trevor Mudge,et al.  True Random Number Generator With a Metastability-Based Quality Control , 2008, IEEE J. Solid State Circuits.

[38]  Xiongfeng Ma,et al.  Ultrafast quantum random number generation based on quantum phase fluctuations. , 2011, Optics express.

[39]  N. Lutkenhaus,et al.  QUANTUM CRYPTOGRAPHY: FROM THEORY TO PRACTICE , 2007, quant-ph/0702202.

[40]  Michael A Wayne,et al.  Low-bias high-speed quantum random number generator via shaped optical pulses. , 2010, Optics express.

[41]  Takahiro Sagawa,et al.  Upper bound on our knowledge about noncommuting observables for a qubit system (Non-Commutative Analysis and Micro-Macro Duality) , 2007 .

[42]  Biham,et al.  Quantum cryptographic network based on quantum memories. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[43]  H. Lo,et al.  High-speed quantum random number generation by measuring phase noise of a single-mode laser. , 2010, Optics letters.

[44]  A. W. Sharpe,et al.  A High Speed, Post-Processing Free, Quantum Random Number Generator , 2008, ArXiv.