Performance parameters of an ejector-absorption heat transformer
暂无分享,去创建一个
Adnan Sözen | Erol Arcaklioğlu | Mehmet Özalp | Serdar Yucesu | E. Arcaklioğlu | A. Sözen | M. Özalp | Serdar Yucesu
[1] Adnan Sözen,et al. A new approach to thermodynamic analysis of ejector–absorption cycle: artificial neural networks , 2003 .
[2] S. Srinivasa Murthy,et al. Experiments on a vapour absorption heat transformer , 1993 .
[3] Zhang Lin,et al. Global optimization of absorption chiller system by genetic algorithm and neural network , 2002 .
[4] Ch. Trepp,et al. Simulation of a solar driven aqua-ammonia absorption refrigeration system Part 1: mathematical description and system optimization , 1987 .
[5] Adnan Sözen,et al. Effect of heat exchangers on performance of absorption refrigeration systems , 2001 .
[6] Xin Wang,et al. Study on a new ejection-absorption heat transformer , 2001 .
[7] Soteris A. Kalogirou,et al. Optimization of solar systems using artificial neural-networks and genetic algorithms , 2004 .
[8] D. C. Erickson,et al. 500°F Absorption Heat Pump Under Development , 1986 .
[9] P. Bourseau,et al. Réfrigération par cycle à absorption-diffusion: comparison des performances des systèmes NH3H2O et NH3NaSCN , 1986 .
[10] D. Richon,et al. Modeling of thermodynamic properties using neural networks: Application to refrigerants , 2002 .
[11] Soteris A. Kalogirou,et al. Artificial neural networks for modelling the starting-up of a solar steam-generator , 1998 .
[12] Ch. Trepp,et al. Equation of state for ammonia-water mixtures , 1984 .
[13] Soteris A. Kalogirou,et al. Artificial neural networks used for the performance prediction of a thermosiphon solar water heater , 1999 .
[14] Ashish Dwivedi,et al. Potential applications of artificial neural networks to thermodynamics: vapor–liquid equilibrium predictions , 1999 .
[15] Mohamed Mohandes,et al. Estimation of global solar radiation using artificial neural networks , 1998 .
[16] B. D. Bunday,et al. Basic optimisation methods , 1985, Mathematical Gazette.
[17] Adnan Sözen,et al. Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle , 2004 .
[18] S. Biswas,et al. Liquid—vapour coexistence curve of methyl fluoride in the critical region , 1989 .
[19] Soteris A. Kalogirou,et al. MODELING OF SOLAR DOMESTIC WATER HEATING SYSTEMS USING ARTIFICIAL NEURAL NETWORKS , 1999 .
[20] Rodney L. McClain,et al. Neural network analysis of fin-tube refrigerating heat exchanger with limited experimental data , 2001 .
[21] Adnan Sözen,et al. Investigation of thermodynamic properties of refrigerant/absorbent couples using artificial neural networks , 2004 .
[22] Ibrahim M. Ismail,et al. Upgrading of heat through absorption heat transformers , 1995 .
[23] L. Puigjaner,et al. Use of neural networks and expert systems to control a gas/solid sorption chilling machine , 1999 .
[24] Soteris A. Kalogirou,et al. Artificial neural networks for the prediction of the energy consumption of a passive solar building , 2000 .
[25] Rosenberg J. Romero,et al. Evaluation of a heat transformer powered by a solar pond , 2000 .
[26] Adnan Sözen,et al. Performance analysis of ejector absorption heat pump using ozone safe fluid couple through artificial neural networks , 2004 .
[27] K. Abrahamsson,et al. Design and experimental performance evaluation of an absorption heat transformer with self-circulation , 1995 .
[28] Vojislav Kecman,et al. New approach to dynamic modelling of vapour-compression liquid chillers: artificial neural networks , 2001 .
[29] Reinhard Radermacher,et al. Development of an absorption heat pump water heater using an aqueous ternary hydroxide working fluid , 1991 .
[30] Soteris A. Kalogirou,et al. Applications of artificial neural networks in energy systems , 1999 .