Model reduction and coarse-graining approaches for multiscale phenomena
暂无分享,去创建一个
Nikolaos Kazantzis | Constantinos Theodoropoulos | Ioannis G. Kevrekidis | Alexander N. Gorban | Hans Christian Öttinger | Alexander N Gorban | I. Kevrekidis | N. Kazantzis | H. C. Öttinger | Constantinos Theodoropoulos
[1] Constantinos Theodoropoulos,et al. Order reduction for nonlinear dynamic models of distributed reacting systems , 2000 .
[2] R. Courant. Methods of mathematical physics, Volume I , 1965 .
[3] A. N. Gorban,et al. Constructive methods of invariant manifolds for kinetic problems , 2003 .
[4] Christopher K. R. T. Jones,et al. Tracking invariant manifolds up to exponentially small errors , 1996 .
[5] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[6] Theresa A. Good,et al. Invariant manifolds and the calculation of the long-term asymptotic response of nonlinear processes using singular PDEs , 2002 .
[7] A. M. Lyapunov. The general problem of the stability of motion , 1992 .
[8] Anthony J. Roberts,et al. Low-dimensional modelling of dynamics via computer algebra , 1996, chao-dyn/9604012.
[9] Alessandro Astolfi,et al. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems , 2001, IEEE Trans. Autom. Control..
[10] Herschel Rabitz,et al. A general analysis of exact lumping in chemical kinetics , 1989 .
[11] George R. Sell,et al. Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations , 1989 .
[12] S. Shvartsman,et al. Nonlinear model reduction for control of distributed systems: A computer-assisted study , 1998 .
[13] Hans G. Kaper,et al. Analysis of the Computational Singular Perturbation Reduction Method for Chemical Kinetics , 2004, J. Nonlinear Sci..
[14] A. Gorban,et al. Invariant Manifolds for Physical and Chemical Kinetics , 2005 .
[15] Iliya V. Karlin,et al. Method of invariant manifold for chemical kinetics , 2003 .
[16] Shi Jin,et al. Regularization of the Burnett equations for rapid granular flows via relaxation , 2001 .
[17] Nikolaos Kazantzis,et al. Singular PDEs and the problem of finding invariant manifolds for nonlinear dynamical systems , 2000 .
[18] Marc R. Roussel,et al. Invariant manifold methods for metabolic model reduction. , 2001, Chaos.
[19] A. N. Gorbana,et al. Reduced description in the reaction kinetics , 1999 .
[20] Iliya V. Karlin,et al. The universal limit in dynamics of dilute polymeric solutions , 2000 .
[21] Prodromos Daoutidis,et al. Singular perturbation modeling of nonlinear processes with nonexplicit time-scale multiplicity , 1998 .
[22] Ahmet Palazoglu,et al. Nonlinear and robust control of PDE systems—methods and applications to transport‐reaction processes, Panagiotis D. Christofides, Birkhauser, Boston, MA, USA, 2001, 248pp. , 2003 .
[23] G. Sell,et al. On the computation of inertial manifolds , 1988 .
[24] M. Roussel. Forced‐convergence iterative schemes for the approximation of invariant manifolds , 1997 .
[25] Alexander N. Gorban,et al. Method of invariant manifolds and regularization of acoustic spectra , 1994 .
[26] G. Moore,et al. Geometric methods for computing invariant manifolds , 1995 .
[27] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .
[28] Stephen M. Cox,et al. Initial conditions for models of dynamical systems , 1995 .