Implementing a global DEM database on the sphere based on spherical wavelets

Wavelets have been proven to be an exceedingly powerful and highly efficient tool for fast computational algorithms in the fields of image data analysis and compression. Traditionally, the classical constructed wavelets are often employed to Euclidean infinite domains (such as the real line R and plane R2). In this paper, a spherical wavelet constructed for discrete DEM data based on the sphere is approached. Firstly, the discrete biorthogonal spherical wavelet with custom properties is constructed with the lifting scheme based on wavelet toolbox in Matlab. Then, the decomposition and reconstruction algorithms are proposed for efficient computation and the related wavelet coefficients are obtained. Finally, different precise images are displayed and analyzed at the different percentage of wavelet coefficients. The efficiency of this spherical wavelet algorithm is tested by using the GTOPO30 DEM data and the results show that at the same precision, the spherical wavelet algorithm consumes smaller storage volume. The results are good and acceptable.