Wave attenuation characteristics of a tethered float system

Abstract Wave attenuation characteristics of a tethered float system have been investigated for various wave heights, wave periods, water depths, depths of submergence of floats and float sizes. As the floats are similar in size and shape, only a single tethered spherical float is considered for the theoretical analysis. Float motion is determined through the dynamical equation of motion, developed for a single degree of freedom. From incident and transmitted wave powers, transmission coefficients are computed. The results show that transmission coefficient does not vary with changes in wave height or water depth. When depth of submergence of float increases, wave attenuation decreases, showing that the system performs well when it is just submerged. As float velocity decreases with increase in float size, transmission coefficient increases with increase in float size. The influence of wave period on wave attenuation is remarkable compared to other parameters. The effect of drag on wave attenuation is studied for varying drag coefficient values. Theoretical results are compared with experimental values and it is found that theory overestimates wave attenuation which may probably be due to various linearisations involved in the theoretical formulation.