Time-distributed optimization for real-time model predictive control: Stability, robustness, and constraint satisfaction

Abstract Time-distributed optimization is an implementation strategy that can significantly reduce the computational burden of model predictive control. When using this strategy, optimization iterations are distributed over time by maintaining a running solution estimate for the optimal control problem and updating it at each sampling instant. The resulting controller can be viewed as a dynamic compensator which is placed in closed-loop with the plant. This paper presents a general systems theoretic analysis framework for time-distributed optimization. The coupled plant-optimizer system is analyzed using input-to-state stability concepts and sufficient conditions for stability and constraint satisfaction are derived. In particular, we demonstrate that it is possible to recover the qualitative stability, robustness, and constraint satisfaction properties of the optimal model predictive control feedback law using a finite number of optimization algorithm iterations per sampling instant. When applied to time-distributed sequential quadratic programming, the framework significantly extends the existing theoretical analysis for the real-time iteration scheme. Numerical simulations are presented that demonstrate the effectiveness of the scheme.

[1]  M. Diehl,et al.  Nominal stability of real-time iteration scheme for nonlinear model predictive control , 2005 .

[2]  Alberto Bemporad,et al.  Stabilizing Linear Model Predictive Control Under Inexact Numerical Optimization , 2014, IEEE Transactions on Automatic Control.

[3]  L. Grippo,et al.  Exact penalty functions in constrained optimization , 1989 .

[4]  Jan Swevers,et al.  Experimental validation of nonlinear MPC on an overhead crane using automatic code generation , 2012, 2012 American Control Conference (ACC).

[5]  Stephen J. Wright,et al.  Application of Interior-Point Methods to Model Predictive Control , 1998 .

[6]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[7]  Ilya V. Kolmanovsky,et al.  Embedding Constrained Model Predictive Control in a Continuous-Time Dynamic Feedback , 2017, IEEE Transactions on Automatic Control.

[8]  Knut Graichen A fixed-point iteration scheme for real-time model predictive control , 2012, Autom..

[9]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[10]  Francesco Borrelli,et al.  An auto-generated nonlinear MPC algorithm for real-time obstacle avoidance of ground vehicles , 2013, 2013 European Control Conference (ECC).

[11]  Alberto Bemporad,et al.  An Accelerated Dual Gradient-Projection Algorithm for Embedded Linear Model Predictive Control , 2014, IEEE Transactions on Automatic Control.

[12]  Eduardo F. Camacho,et al.  Constrained Model Predictive Control , 2007 .

[13]  Victor M. Zavala,et al.  Real-Time Nonlinear Optimization as a Generalized Equation , 2010, SIAM J. Control. Optim..

[14]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[15]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).

[16]  Ilya V. Kolmanovsky,et al.  An integrated perturbation analysis and Sequential Quadratic Programming approach for Model Predictive Control , 2009, Autom..

[17]  Stephen J. Wright,et al.  Conditions under which suboptimal nonlinear MPC is inherently robust , 2011, Syst. Control. Lett..

[18]  L. Biegler,et al.  Fast economic model predictive control based on NLP-sensitivities , 2014 .

[19]  Stephen P. Boyd,et al.  ECOS: An SOCP solver for embedded systems , 2013, 2013 European Control Conference (ECC).

[20]  Andreas Kugi,et al.  Stability and Incremental Improvement of Suboptimal MPC Without Terminal Constraints , 2010, IEEE Transactions on Automatic Control.

[21]  Ilya V. Kolmanovsky,et al.  Lipschitz Stability in Discretized Optimal Control with Application to SQP , 2019, SIAM J. Control. Optim..

[22]  D. Limón,et al.  Input-to-State Stability: A Unifying Framework for Robust Model Predictive Control , 2009 .

[23]  James B. Rawlings,et al.  On the inherent robustness of optimal and suboptimal nonlinear MPC , 2017, Syst. Control. Lett..

[24]  A. F. Izmailov,et al.  Newton-Type Methods for Optimization and Variational Problems , 2014 .

[25]  Robert Prucka,et al.  An Economic Nonlinear Model Predictive Control Strategy for SI Engines: Model-Based Design and Real-Time Experimental Validation , 2019, IEEE Transactions on Control Systems Technology.

[26]  Moritz Diehl,et al.  In-Vehicle Realization of Nonlinear MPC for Gasoline Two-Stage Turbocharging Airpath Control , 2018, IEEE Transactions on Control Systems Technology.

[27]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[28]  Alberto Bemporad,et al.  From linear to nonlinear MPC: bridging the gap via the real-time iteration , 2020, Int. J. Control.

[29]  Ilya V. Kolmanovsky,et al.  A Semismooth Predictor Corrector Method for Real-Time Constrained Parametric Optimization with Applications in Model Predictive Control , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[30]  Moritz Diehl,et al.  Nonlinear MPC of kites under varying wind conditions for a new class of large‐scale wind power generators , 2007 .

[31]  Ilya V. Kolmanovsky,et al.  A Semismooth Predictor Corrector Method for Suboptimal Model Predictive Control , 2019, 2019 18th European Control Conference (ECC).

[32]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[33]  Martin Guay,et al.  A design technique for fast sampled-data nonlinear model predictive control with convergence and stability results , 2020, Int. J. Control.

[34]  R. Tyrrell Rockafellar,et al.  An Euler-Newton Continuation Method for Tracking Solution Trajectories of Parametric Variational Inequalities , 2013, SIAM J. Control. Optim..

[35]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[36]  Tulga Ersal,et al.  Collision Imminent Steering Using Nonlinear Model Predictive Control , 2018, 2018 Annual American Control Conference (ACC).

[37]  Frank Allgöwer,et al.  A Stabilizing Real-time Implementation of Nonlinear Model Predictive Control , 2007 .

[38]  Sebastien Gros,et al.  An economic NMPC formulation for wind turbine control , 2013, 52nd IEEE Conference on Decision and Control.

[39]  Manfred Morari,et al.  Optimization‐based autonomous racing of 1:43 scale RC cars , 2015, ArXiv.

[40]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[41]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[42]  N. Josephy Newton's Method for Generalized Equations. , 1979 .

[43]  Moritz Diehl,et al.  CasADi -- A symbolic package for automatic differentiation and optimal control , 2012 .

[44]  Lars Grüne,et al.  Analysis of unconstrained NMPC schemes with incomplete optimization , 2010 .

[45]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[46]  Zhong-Ping Jiang,et al.  Nonlinear small-gain theorems for discrete-time feedback systems and applications , 2004, Autom..

[47]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[48]  L. Biegler,et al.  Quadratic programming methods for reduced Hessian SQP , 1994 .

[49]  Johannes P. Schlöder,et al.  Real-Time Optimization for Large Scale Processes: Nonlinear Model Predictive Control of a High Purity Distillation Column , 2001 .

[50]  Dinh Quoc Tran,et al.  Adjoint-Based Predictor-Corrector Sequential Convex Programming for Parametric Nonlinear Optimization , 2012, SIAM J. Optim..

[51]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[52]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[53]  Dominic Liao-McPherson,et al.  A Regularized and Smoothed Fischer–Burmeister Method for Quadratic Programming With Applications to Model Predictive Control , 2018, IEEE Transactions on Automatic Control.

[54]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[55]  A. Teel A nonlinear small gain theorem for the analysis of control systems with saturation , 1996, IEEE Trans. Autom. Control..

[56]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[57]  Goele Pipeleers,et al.  Real-time proximal gradient method for embedded linear MPC , 2019, Mechatronics.

[58]  Moritz Diehl,et al.  Towards a modular software package for embedded optimization , 2018 .