Validation of Jason-2 Altimeter Data by Waveform Retracking over California Coastal Ocean

We validated Jason-2 satellite altimeter Sensor Geophysical Data Records (SGDR) by retracking 20-Hz radar waveforms over the California coastal ocean using cycles 7–34, corresponding to September 2008–June 2009. The performance of the ocean, ice, threshold, and modified threshold retrackers are examined using a reference geoid based on Earth Gravitational Model 2008 (EGM08). Over the shallow ocean (depth < 200 m), the modified threshold retracker, which is developed for noisy waveforms with preleading edge bump, outperforms the other retrackers. It is also shown that retracking can improve the precision of sea surface heights (SSHs) for areas beyond 2–5 km from the shore. Although the ocean retracker generally performs well over the deep ocean (depth > 200 m), the ocean-retracked SSHs from some of the cycles are found to be less precise when the waveforms do not conform to the Brown ocean model. We found that the retrackers developed for nonocean surfaces can improve the noisy ocean-retracked SSHs. Among the retrackers tested here, the ice retracker overall provides the most precise SSH estimates over the deep ocean in average using cycles 7–34 in the study region.

[1]  Philippe Gaspar,et al.  Nonparametric Estimates of the Sea State Bias for the Jason-1 Radar Altimeter , 2004 .

[2]  G. Brown The average impulse response of a rough surface and its applications , 1977 .

[3]  Curt H. Davis,et al.  A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters , 1997, IEEE Trans. Geosci. Remote. Sens..

[4]  C. Shum,et al.  Application of TOPEX altimetry for solid earth deformation studies , 2008 .

[5]  William J. Emery,et al.  Computing Coastal Ocean Surface Currents From Infrared and Ocean Color Satellite Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Donald E. Barrick,et al.  Chapter 3 Analysis and Interpretation of Altimeter Sea Echo , 1985 .

[7]  C. K. Shum,et al.  Coastal Altimetry and Applications , 1999 .

[8]  Chung-Yen Kuo,et al.  Calibration of JASON-1 Altimeter over Lake Erie Special Issue: Jason-1 Calibration/Validation , 2003 .

[9]  Xiaoli Deng,et al.  A coastal retracking system for satellite radar altimeter waveforms: Application to ERS‐2 around Australia , 2006 .

[10]  G. Hayne,et al.  Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering , 1980 .

[11]  P. Berry,et al.  Estimation of Contamination of ERS-2 and POSEIDON Satellite Radar Altimetry Close to the Coasts of Australia , 2002 .

[12]  John C. Ries,et al.  Calibration of Jason-1 altimeter over Lake Erie Using Global Along-Track Residuals with TOPEX , 2003 .

[13]  H. Jay Zwally,et al.  Analysis and retracking of continental ice sheet radar altimeter waveforms , 1983 .

[14]  Jonathan L. Bamber,et al.  Ice sheet altimeter processing scheme , 1994 .

[15]  Christine Gommenginger,et al.  Retracking Altimeter Waveforms Near the Coasts , 2011 .

[16]  Yong Wang,et al.  Improved retracking algorithm for oceanic altimeter waveforms , 2009 .

[17]  Jinyun Guo,et al.  Coastal Gravity Anomalies from Retracked Geosat/GM Altimetry: Improvement, Limitation and the Role of Airborne Gravity Data , 2006 .

[18]  John C. Ries,et al.  Chapter 1 Satellite Altimetry , 2001 .

[19]  Ernesto Rodriguez,et al.  Altimetry for non‐Gaussian oceans: Height biases and estimation of parameters , 1988 .

[20]  W. Emery,et al.  Extracting Multiyear Surface Currents from Sequential Thermal Imagery Using the Maximum Cross-Correlation Technique , 2002 .

[21]  Ernesto Rodriguez,et al.  Extracting ocean surface information from altimeter returns - The deconvolution method , 1989 .

[22]  R. L. Brooks,et al.  Land Effects on TOPEX Radar Altimeter Measurements on Pacific Rim Coastal Zones , 1997 .

[23]  Chung-Yen Kuo,et al.  Laurentia crustal motion observed using TOPEX/POSEIDON radar altimetry over land , 2008 .