Multiscale simulation of carbon nanotube devices

[1]  Surendra Roy,et al.  Electronic and transport properties of carbon nanotubes , 2010 .

[2]  Nicolas Chimot,et al.  Carbon nanotube chemistry and assembly for electronic devices , 2009 .

[3]  S. Roche,et al.  Anomalous doping effects on charge transport in graphene nanoribbons. , 2009, Physical review letters.

[4]  S. Latil,et al.  Effect of the chemical functionalization on charge transport in carbon nanotubes at the mesoscopic scale. , 2009, Nano letters.

[5]  D. Querlioz,et al.  Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices , 2008 .

[6]  E. R. Margine,et al.  Thermal stability of graphene and nanotube covalent functionalization. , 2008, Nano letters.

[7]  T. Zimmer,et al.  Computationally Efficient Physics-Based Compact CNTFET Model for Circuit Design , 2008, IEEE Transactions on Electron Devices.

[8]  A. Fazzio,et al.  Designing real nanotube-based gas sensors. , 2008, Physical review letters.

[9]  J. Chaste,et al.  Single carbon nanotube transistor at GHz frequency. , 2008, Nano letters.

[10]  Preserved conductance in covalently functionalized silicon nanowires. , 2008, Physical review letters.

[11]  J. Palacios,et al.  Metal contacts in carbon nanotube field-effect transistors: Beyond the Schottky barrier paradigm , 2007, 0705.1328.

[12]  S. Latil,et al.  LOW-DIMENSIONAL QUANTUM TRANSPORT PROPERTIES OF CHEMICALLY-DISORDERED CARBON NANOTUBES: FROM WEAK TO STRONG LOCALIZATION REGIMES , 2007 .

[13]  D. Querlioz,et al.  On the Ability of the Particle Monte Carlo Technique to Include Quantum Effects in Nano-MOSFET Simulation , 2007, IEEE Transactions on Electron Devices.

[14]  A. Jauho,et al.  Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires. , 2007, Physical review letters.

[15]  Henri Happy,et al.  Intrinsic current gain cutoff frequency of 30GHz with carbon nanotube transistors , 2007 .

[16]  Jean-Christophe Charlier,et al.  Electronic and transport properties of nanotubes , 2007 .

[17]  Satoru Suzuki,et al.  Production of single-walled carbon nanotubes with narrow diameter distribution using iron nanoparticles derived from DNA-binding proteins from starved cells , 2007 .

[18]  M. Lundstrom,et al.  Nonequilibrium Green's Function Treatment of Phonon Scattering in Carbon-Nanotube Transistors , 2007, IEEE Transactions on Electron Devices.

[19]  Yukinori Ochiai,et al.  Horizontally directional single-wall carbon nanotubes grown by chemical vapor deposition with a local electric field , 2007 .

[20]  Monte Carlo Modeling of Schottky Contacts on Semiconducting Carbon Nanotubes , 2007 .

[21]  D. Querlioz,et al.  An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs , 2007 .

[22]  X. Blase,et al.  Conductance, surface traps, and passivation in doped silicon nanowires. , 2006, Nano letters.

[23]  T. Zimmer,et al.  Analysis of CNTFET physical compact model , 2006, International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006..

[24]  M. Lee,et al.  Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires , 2006, Nature nanotechnology.

[25]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[26]  X. Blase,et al.  Investigating Chemical Disorder Strength in Carbon Nanotubes : Magnetic Tuning of Quantum Transport Regimes , 2006 .

[27]  N. Marzari,et al.  Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes. , 2006, Physical review letters.

[28]  C. Roland,et al.  Ab initio band bending, metal-induced gap states, and Schottky barriers of a carbon and a boron nitride nanotube device , 2006 .

[29]  X. Blase,et al.  Surface segregation and backscattering in doped silicon nanowires. , 2006, Physical review letters.

[30]  S. Roche,et al.  Reduced backscattering in potassium-doped nanotubes : Ab initio and semiempirical simulations , 2006 .

[31]  H. Dai,et al.  DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high kappa dielectrics for nanotube transistors with 60 mV/decade switching. , 2006, Journal of the American Chemical Society.

[32]  S. Galdin-Retailleau,et al.  Electron-phonon scattering and ballistic behavior in semiconducting carbon nanotubes , 2005 .

[33]  A. Verma,et al.  Effects of radial breathing mode phonons on charge transport in semiconducting zigzag carbon nanotubes , 2005 .

[34]  N. Marzari,et al.  Band structure and quantum conductance of nanostructures from maximally localized Wannier functions: the case of functionalized carbon nanotubes. , 2005, Physical review letters.

[35]  C. Gómez-Navarro,et al.  Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime , 2005, Nature materials.

[36]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[37]  Satoru Suzuki,et al.  Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution. , 2005, Journal of the American Chemical Society.

[38]  Qian Wang,et al.  Electrical contacts to carbon nanotubes down to 1nm in diameter , 2005 .

[39]  Kaushik Roy,et al.  A circuit-compatible model of ballistic carbon nanotube field-effect transistors , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[40]  S. Selberherr,et al.  Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices , 2004 .

[41]  Cambridge,et al.  The strength of the radial-breathing mode in single-walled carbon nanotubes , 2004, cond-mat/0408436.

[42]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[43]  Mark S. Lundstrom,et al.  A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors , 2003, IEEE Transactions on Electron Devices.

[44]  Francisco Pompeo,et al.  Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. , 2003, Journal of the American Chemical Society.

[45]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[46]  N. Goldsman,et al.  Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes , 2003 .

[47]  Christoph Jungemann,et al.  Hierarchical device simulation : the Monte-Carlo perspective , 2003 .

[48]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[49]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[50]  Carlo Jacoboni,et al.  QUANTUM TRANSPORT AND ITS SIMULATION WITH THE WIGNER-FUNCTION APPROACH , 2001 .

[51]  J. Tersoff,et al.  Role of fermi-level pinning in nanotube schottky diodes , 2000, Physical review letters.

[52]  Cohen,et al.  Defects, quasibound states, and quantum conductance in metallic carbon nanotubes , 2000, Physical review letters.

[53]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[54]  Gerhard Klimeck,et al.  Single and multiband modeling of quantum electron transport through layered semiconductor devices , 1997 .

[55]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[56]  R. W. Kelsall,et al.  The Monte Carlo method for semiconductor device simulation , 1995 .

[57]  C. Duke,et al.  Calculation of the Schottky barrier height at the Al/GaAs(001) heterojunction : effect of interfacial atomic relaxations , 1993 .

[58]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[59]  Moroni,et al.  Electronic structure of the InAs-GaSb superlattice studied by the renormalization method. , 1989, Physical review. B, Condensed matter.

[60]  R. Landauer,et al.  Generalized many-channel conductance formula with application to small rings. , 1985, Physical review. B, Condensed matter.

[61]  M. Sancho,et al.  Quick iterative scheme for the calculation of transfer matrices: application to Mo (100) , 1984 .

[62]  C. Caroli,et al.  Direct calculation of the tunneling current , 1971 .

[63]  R. Landauer,et al.  Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988, IBM J. Res. Dev..