Quadrupole collectivity in the neutron-rich sulfur isotopes S38,40,42,44

Electromagnetic transition strengths in the even-even neutron-rich sulfur isotopes $^{38,40,42,44}\mathrm{S}$ were measured using intermediate-energy Coulomb excitation at the National Superconducting Cyclotron Laboratory. By utilizing the sensitivity of the experimental technique to $E2$ excitations from the ground state, the evolution of the pattern of $B(E2)$ strengths to several low-lying ${2}^{+}$ states was investigated at $Z=16$ from near stability to the $N=28$ island of inversion. The experimental results allowed a detailed comparison with predictions from shell-model calculations using the SDPF-MU Hamiltonian, which was designed to describe collectivity in this region of the nuclear chart. While the shell-model calculations succeeded in modeling transition strengths at $N=22,24,26$, the experimental $B(E2;{0}_{1}^{+}\ensuremath{\rightarrow}{2}_{1}^{+})$ at $N=28$ was smaller than the predicted value by about a factor of 2, similar to previous observations for chlorine and argon isotopes around $N=28$. The dependence of this overprediction by theory on the choice of effective charges was explored.

[1]  D. Bazin,et al.  Shape Changes in the N=28 Island of Inversion: Collective Structures Built on Configuration-Coexisting States in ^{43}S. , 2020, Physical review letters.

[2]  D. Bazin,et al.  Shell structure of S43 and collapse of the N=28 shell closure , 2020, Physical Review C.

[3]  N. Shimizu,et al.  Ab initio multishell valence-space Hamiltonians and the island of inversion , 2020, 2004.12969.

[4]  B. A. Brown,et al.  Electromagnetic properties of 21O for benchmarking nuclear Hamiltonians , 2019, Physics Letters B.

[5]  Toshio Suzuki,et al.  Evolution of shell structure in exotic nuclei , 2018, Reviews of Modern Physics.

[6]  B. A. Brown,et al.  Inverse-kinematics proton scattering from S42,44, P41,43 , and the collapse of the N=28 major shell closure , 2019, Physical Review C.

[7]  B. A. Brown,et al.  Is the Structure of ^{42}Si Understood? , 2019, Physical review letters.

[8]  B. A. Brown,et al.  Lifetime Measurements and Triple Coexisting Band Structure in ^{43}S. , 2018, Physical review letters.

[9]  B. A. Brown,et al.  Measurement of key resonances for the 24Al (p,γ) 25Si reaction rate using in-beam γ -ray spectroscopy , 2018 .

[10]  G. Maron,et al.  Quadrupole collectivity in Ca 42 from low-energy Coulomb excitation with AGATA , 2018 .

[11]  M. Hjorth-Jensen,et al.  Quadrupole collectivity beyond N = 50 in neutron-rich Se and Kr isotopes , 2017 .

[12]  M. Riley,et al.  Isomeric Character of the Lowest Observed 4^{+} State in ^{44}S. , 2017, Physical review letters.

[13]  B. A. Brown,et al.  In-beam γ -ray spectroscopy of S 38 – 42 , 2016 .

[14]  B. A. Brown,et al.  Single-particle structure at N=29: The structure of Ar 47 and first spectroscopy of S 45 , 2016 .

[15]  Z. Podolyák,et al.  Coulomb excitation of Ca 44 and Ar 46 , 2016 .

[16]  J. G. Johansen,et al.  Spectroscopy of Ar-46 by the (t, p) two-neutron transfer reaction , 2016, 1604.04014.

[17]  B. Sherrill,et al.  NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability , 2016 .

[18]  A. Gade,et al.  Shape coexistence in neutron-rich nuclei , 2016 .

[19]  T. R. Rodríguez,et al.  Collective and Single-Particle Motion in Beyond Mean Field Approaches. , 2015, Physical review letters.

[20]  T. Otsuka,et al.  Nature of isomerism in exotic sulfur isotopes. , 2014, Physical review letters.

[21]  B. A. Brown,et al.  Single-particle structure of silicon isotopes approaching Si 42 , 2014 .

[22]  F. Nowacki,et al.  Merging of the islands of inversion at N =20 and N =28 , 2013, 1309.6955.

[23]  Balraj Singh,et al.  Tables of E2 transition probabilities from the first 2+ states in even–even nuclei , 2013, 1312.5975.

[24]  B. A. Brown,et al.  Quadrupole collectivity in neutron-deficient Sn nuclei: 104 Sn and the role of proton excitations , 2013, 1310.5987.

[25]  B. A. Brown,et al.  Shape transitions in exotic Si and S isotopes and tensor-force-driven Jahn-Teller effect , 2012, 1210.5469.

[26]  B. A. Brown,et al.  γ-ray spectroscopy of one-proton knockout from 45Cl , 2012 .

[27]  B. A. Brown,et al.  In-beam γ-ray spectroscopy of 43 -46Cl , 2012 .

[28]  T. Nakamura,et al.  Well developed deformation in 42Si. , 2012, Physical review letters.

[29]  B. A. Brown,et al.  Quadrupole collectivity beyond N = 28: intermediate-energy Coulomb excitation of (47,48)Ar. , 2012, Physical review letters.

[30]  A. Burger,et al.  In-beam spectroscopic studies of the 44S nucleus , 2012, 1201.1366.

[31]  B. A. Brown,et al.  Triple configuration coexistence in $^{44}$S , 2011 .

[32]  T. Mizusaki,et al.  Shell model study for neutron-rich sd-shell nuclei , 2011, 1101.1571.

[33]  D. Bazin,et al.  CAESAR—A high-efficiency CsI(Na) scintillator array for in-beam γ-ray spectroscopy with fast rare-isotope beams , 2010 .

[34]  D. Bazzacco,et al.  Lifetime measurements of excited states in neutron-rich Ar44,46 populated via a multinucleon transfer reaction , 2010 .

[35]  A. Buta,et al.  Prolate-spherical shape coexistence at N=28 in 44S. , 2010, Physical Review Letters.

[36]  A. Latina,et al.  γ-ray spectroscopy of neutron-rich S40 , 2010 .

[37]  B. A. Brown,et al.  sd-shell observables for the USDA and USDB Hamiltonians , 2008 .

[38]  M. Porquet,et al.  Nuclear magic numbers: New features far from stability , 2008, 0805.2561.

[39]  T. Glasmacher,et al.  In-beam nuclear spectroscopy of bound states with fast exotic ion beams , 2008 .

[40]  F. Nowacki,et al.  A New effective interaction for 0 - h-bar - omega shell model calculations in the sdpf valence space , 2007, 0712.2936.

[41]  F. Delaunay,et al.  On the measurement of B(E2, 0 + 1 → 2 + 1 ) using intermediate-energy Coulomb excitation , 2007, 0708.3007.

[42]  Z. Podolyák,et al.  Collapse of the N=28 shell closure in (42)Si. , 2007, Physical review letters.

[43]  F. Nowacki,et al.  Coexistence of spherical states with deformed and superdeformed bands in doubly magic Ca-40: A Shell model challenge , 2007, nucl-th/0702047.

[44]  B. A. Brown,et al.  Evolution of the E(1/2(1)(+))-E(3/2(1)(+)) energy spacing in odd-mass K, Cl, and P isotopes for N=20-28 , 2006, nucl-ex/0608014.

[45]  A. S. University,et al.  Accuracy of B(E2;0 + 1 →2 + 1 ) transition rates from intermediate-energy Coulomb excitation experiments , 2005, nucl-ex/0512024.

[46]  C. Jollet,et al.  Observation of the 0+2 state in 44S , 2005 .

[47]  B. A. Brown,et al.  Nuclear structure in the vicinity of N=Z=28 {sup 56}Ni , 2004 .

[48]  B. A. Brown,et al.  New effective interaction for pf-shell nuclei and its implications for the stability of the N = Z = 28 closed core , 2004, nucl-th/0402079.

[49]  D. Bazin,et al.  Detailed experimental study on intermediate-energy Coulomb excitation of 46 Ar , 2003 .

[50]  J. Yurkon,et al.  The S800 spectrograph , 2003 .

[51]  A. Stolz,et al.  Commissioning the A1900 projectile fragment separator , 2003 .

[52]  J. Duprat,et al.  Shape evolution in heavy sulfur isotopes and erosion of the N=28 shell closure , 2002 .

[53]  J. Yurkon,et al.  Focal plane detector for the S800 high-resolution spectrometer , 1999 .

[54]  P. Mantica,et al.  Coulomb excitation of odd-A neutron-rich pi (s-d) and nu (f-p) shell nuclei , 1999 .

[55]  T. Glasmacher COULOMB EXCITATION AT INTERMEDIATE ENERGIES , 1998 .

[56]  B. A. Brown,et al.  Shell-model plus Hartree-Fock calculations for the neutron-rich Ca isotopes , 1998 .

[57]  B. A. Brown,et al.  Collectivity in 44S , 1997 .

[58]  Steiner,et al.  New Region of Deformation: The Neutron-Rich Sulfur Isotopes. , 1996, Physical review letters.

[59]  Ahmad,et al.  Gamma ray studies of neutron-rich sdf shell nuclei produced in heavy ion collisions. , 1994, Physical review. C, Nuclear physics.

[60]  Wang,et al.  Confirmation of the 2805-keV level of 38S. , 1987, Physical review. C, Nuclear physics.

[61]  Ussery,et al.  36S(t,p gamma )38S reaction. , 1986, Physical review. C, Nuclear physics.

[62]  A. Winther,et al.  Relativistic coulomb excitation , 1979 .

[63]  B. A. Brown,et al.  E2 core-polarization charge for nuclei near 16O and 40Ca , 1977 .

[64]  W. Gerace,et al.  The effect of deformed states in the Ca isotopes , 1967 .