A Differential Model for Growing Sandpiles on Networks

We consider a system of differential equations of Monge--Kantorovich type which describes the equilibrium configurations of granular material poured by a constant source on a network. Relying on the definition of viscosity solution for Hamilton--Jacobi equations on networks introduced in [P.-L. Lions and P. E. Souganidis, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 (2016), pp. 535--545], we prove existence and uniqueness of the solution of the system and we discuss its numerical approximation. Some numerical experiments are carried out.

[1]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[2]  Cates,et al.  Hysteresis and metastability in a continuum sandpile model. , 1995, Physical review letters.

[3]  Leonid Prigozhin,et al.  Variational model of sandpile growth , 1996, European Journal of Applied Mathematics.

[4]  K. Hadeler,et al.  Dynamical models for granular matter , 1999 .

[5]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[6]  P. Cardaliaguet,et al.  Representation of equilibrium solutions to the table problem of growing sandpiles , 2004 .

[7]  A. Malusa,et al.  On a system of partial differential equations of Monge–Kantorovich type , 2007 .

[8]  P. Cardaliaguet,et al.  On a Differential Model for Growing Sandpiles with Non-Regular Sources , 2009 .

[9]  Fabio Camilli,et al.  Viscosity solutions of Eikonal equations on topological networks , 2011 .

[10]  Graziano Crasta,et al.  A nonhomogeneous boundary value problem in mass transfer theory , 2011, 1103.0111.

[11]  P. Kuchment,et al.  Introduction to Quantum Graphs , 2012 .

[12]  Kurt Mehlhorn,et al.  Physarum can compute shortest paths , 2011, SODA.

[13]  Yves Achdou,et al.  Hamilton–Jacobi equations constrained on networks , 2013 .

[14]  Cyril Imbert,et al.  Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks , 2013, 1306.2428.

[15]  José M. Mazón,et al.  Optimal Mass Transport on Metric Graphs , 2015, SIAM J. Optim..

[16]  P. E. Souganidis,et al.  Viscosity solutions for junctions: well posedness and stability , 2016 .