Hot Deformation Behavior and Processing Maps of a Medium Manganese TRIP Steel

[1]  Y. Liu,et al.  Processing maps for the Cu-Cr-Zr-Y alloy hot deformation behavior , 2016 .

[2]  B. D. Cooman,et al.  Influence of Carbide Precipitation and Dissolution on the Microstructure of Ultra-Fine-Grained Intercritically Annealed Medium Manganese Steel , 2016, Metallurgical and Materials Transactions A.

[3]  Jian-hui Liu,et al.  A Novel Observation on Cementite Formed During Intercritical Annealing of Medium Mn Steel , 2016, Metallurgical and Materials Transactions A.

[4]  S. Yue,et al.  Microstructure Evolution of a Medium Manganese Steel During Thermomechanical Processing , 2016, Metallurgical and Materials Transactions A.

[5]  Liwen Zhang,et al.  Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr–Ni–Mo alloyed steel , 2016 .

[6]  L. Du,et al.  The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel , 2015 .

[7]  J. Cabrera,et al.  A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation , 2015 .

[8]  Guoqun Zhao,et al.  Hot deformation behavior and constitutive modeling of homogenized 6026 aluminum alloy , 2015 .

[9]  C. Tasan,et al.  Nanolaminate Transformation-Induced Plasticity-Twinning-Induced Plasticity steel with Dynamic Strain Partitioning and Enhanced damage Resistance , 2015 .

[10]  S. J. Lee,et al.  The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel , 2014 .

[11]  Y. Weng,et al.  Effect of annealing temperature and time on microstructure evolution of 0·2C–5Mn steel during intercritical annealing process , 2014 .

[12]  Young‐kook Lee,et al.  The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels , 2014 .

[13]  O. Bouaziz,et al.  Evolution of microstructure and mechanical properties of medium Mn steels during double annealing , 2012 .

[14]  Qiang Liu,et al.  Hot deformation behavior of an austenitic Fe–20Mn–3Si–3Al transformation induced plasticity steel , 2012 .

[15]  Yu-hao Cao,et al.  Hot deformation behavior of Ti-15-3 titanium alloy: a study using processing maps, activation energy map, and Zener–Hollomon parameter map , 2012, Journal of Materials Science.

[16]  Qiang Liu,et al.  Prediction of hot deformation behaviour of Fe–25Mn–3Si–3Al TWIP steel , 2011 .

[17]  Zhenshan Cui,et al.  Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part I: Dynamic recrystallization , 2011 .

[18]  Han. Dong,et al.  Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel , 2011 .

[19]  Y. Lin,et al.  A critical review of experimental results and constitutive descriptions for metals and alloys in hot working , 2011 .

[20]  G. Hirt,et al.  Modeling the Flow Behavior of a High‐Manganese Steel Fe‐Mn23‐C0.6 in Consideration of Dynamic Recrystallization , 2011 .

[21]  K. Dehghani,et al.  Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps , 2010 .

[22]  Jian-tao Liu,et al.  Characterization of hot deformation behavior of a new Ni-Cr-Co based P/M superalloy , 2010 .

[23]  A. K. Bhaduri,et al.  Constitutive analysis to predict high-temperature flow stress in modified 9Cr–1Mo (P91) steel , 2010 .

[24]  D. Suh,et al.  Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel , 2010 .

[25]  Z. Nie,et al.  Hot deformation and processing maps of an Al–5.7 wt.%Mg alloy with erbium , 2009 .

[26]  Seok-Jae Lee,et al.  Reverse transformation mechanism of martensite to austenite in a metastable austenitic alloy , 2009 .

[27]  K. V. Kasiviswanathan,et al.  Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel , 2009 .

[28]  Jue Zhong,et al.  Constitutive modeling for elevated temperature flow behavior of 42CrMo steel , 2008 .

[29]  Jue Zhong,et al.  Prediction of 42CrMo steel flow stress at high temperature and strain rate , 2008 .

[30]  E. Cerri,et al.  Isothermal forging of AA2618 + 20% Al2O3 by means of hot torsion and hot compression tests , 2004 .

[31]  H. J. McQueen,et al.  Constitutive analysis in hot working , 2002 .

[32]  Y. Prasad,et al.  Identification of processing parameters for Fe–15Cr–2.2Mo–15Ni–0.3Ti austenitic stainless steel using processing maps , 2001 .

[33]  S. Murty,et al.  On the development of instability criteria during hotworking with reference to IN 718 , 1998 .

[34]  Y. V. R. K. Prasad,et al.  Processing maps for hot working of titanium alloys , 1998 .

[35]  A. Götte,et al.  Metall , 1897 .

[36]  Y. Prasad,et al.  Modelling of hot deformation for microstructural control , 1998 .

[37]  J. H. Hollomon,et al.  Effect of Strain Rate Upon Plastic Flow of Steel , 1944 .