Modification of ZIF-8 with triethylamine molecules for enhanced iodine and bromine adsorption

[1]  C. Lamberti,et al.  XAFS investigation of Co/Zn based ZIFs after I2, Cl2 and Br2 adsorption , 2020 .

[2]  E. A. Bulanova,et al.  MW synthesis of ZIF-65 with a hierarchical porous structure , 2020 .

[3]  Anupkumar Bhaskarapillai,et al.  Crosslinked poly(1-butyl-3-vinylimidazolium bromide): a super efficient receptor for the removal and storage of iodine from solution and vapour phases , 2019, New Journal of Chemistry.

[4]  L. Sun,et al.  Switchable-Hydrophilicity Triethylamine: Formation and Synergistic Effects of Asphaltenes in Stabilizing Emulsions Droplets , 2018, Materials.

[5]  C. Lamberti,et al.  Zn/Co ZIF family: MW synthesis, characterization and stability upon halogen sorption , 2018, Polyhedron.

[6]  C. Lamberti,et al.  Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA , 2017 .

[7]  Cheng-Kang Lee,et al.  Iodine-loaded metal organic framework as growth-triggered antimicrobial agent. , 2017, Materials science & engineering. C, Materials for biological applications.

[8]  Y. S. Lin,et al.  Kinetics of ZIF-8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments , 2016 .

[9]  王洪海,et al.  Monitor the Adsorption of Bromine Vapor on Zeolitic- Imidazolate Framework-8 Film by an Electrodeless Quartz Crystal Microbalance in Overtone , 2016 .

[10]  C. Lamberti,et al.  frameworks: structure, properties, methods of synthesis and characterization , 2022 .

[11]  V. Butova,et al.  New microwave-assisted synthesis of ZIF-8 , 2016 .

[12]  W. Ahn,et al.  ZIF-8: A comparison of synthesis methods , 2015 .

[13]  P. Goh,et al.  Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine , 2014 .

[14]  José L. Fernández,et al.  Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. , 2014, Journal of colloid and interface science.

[15]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[16]  Y. Lou,et al.  Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) in aqueous solution via microwave irradiation , 2013 .

[17]  Jun Kim,et al.  High yield 1-L scale synthesis of ZIF-8 via a sonochemical route , 2013 .

[18]  Koji Kida,et al.  Formation of high crystalline ZIF-8 in an aqueous solution , 2013 .

[19]  G. Ondrey This MOF selectively captures radioactive iodine , 2012 .

[20]  Mark A. Rodriguez,et al.  Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. , 2011, Journal of the American Chemical Society.

[21]  Z. Lai,et al.  Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. , 2011, Chemical communications.

[22]  Jinxiang Dong,et al.  Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. , 2011, Angewandte Chemie.

[23]  Jürgen Caro,et al.  Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.

[24]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[25]  A. Feldhoff,et al.  Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework , 2009 .

[26]  Xiaolin Hou,et al.  A review on speciation of iodine-129 in the environmental and biological samples. , 2009, Analytica chimica acta.

[27]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[28]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[29]  Steven L. Simon,et al.  Fallout from Nuclear Weapons Tests and Cancer Risks , 2006 .

[30]  F. Song,et al.  Flexible alteration of optical nonlinearities of iodine charge-transfer complexes in solutions. , 2004, Optics letters.

[31]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[32]  W. Baumann,et al.  Charge-Transfer Complexes Between Iodine and Substituted Thioureas: Determination of Thermodynamic and Spectroscopic Properties , 1996 .

[33]  R. Sension,et al.  On the structure of iodine charge-transfer complexes in solution , 1995 .

[34]  M. Taştekin,et al.  Titrations in non-aqueous media: Conductimetric and spectrophotometric investigation of reactions between iodine and aliphatic amines in acetonitrile , 1994 .

[35]  R. Abu-eittah,et al.  Electron donor–electron acceptor complexes of carbonyldi-imidazoles and thiocarbonyldi-imidazoles with iodine. Effect of solvent polarity , 1990 .

[36]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[37]  R. A. Mahmoud,et al.  Studies on molecular complexes of n-donors with iodine by the constant activity method , 1984 .

[38]  H. Handel,et al.  Etude de la complexation entre l'iode et la triéthylamine, en solution dans le chloroforme , 1981 .

[39]  H. D. Bist,et al.  Spectroscopic studies of the triethylamine-iodine system in n-heptane and in p-dioxane , 1969 .

[40]  H. Tsubomura,et al.  Dipole Moment of the Molecular Complex between Triethylamine and Iodine , 1957 .

[41]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .