FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

[1]  M. Chester,et al.  Electric Field Effects on Indirect Optical Transitions in Silicon , 1965 .

[2]  T Kawanishi,et al.  Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides. , 2005, Optics express.

[3]  H. Li Refractive index of silicon and germanium and its wavelength and temperature derivatives , 1980 .

[4]  Michal Lipson,et al.  Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide. , 2005, Optics letters.

[5]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[6]  Ansheng Liu,et al.  Optical amplification and lasing by stimulated Raman scattering in silicon waveguides , 2006, Journal of Lightwave Technology.

[7]  David J. Moss,et al.  Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides , 2005 .

[8]  R. Holland Finite-Difference Solution of Maxwell's Equations in Generalized Nonorthogonal Coordinates , 1983, IEEE Transactions on Nuclear Science.

[9]  Tanya M Monro,et al.  A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. , 2009, Optics express.

[10]  G. Agrawal,et al.  Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects , 2010 .

[11]  Michal Lipson,et al.  Optical bistability on a silicon chip. , 2004, Optics letters.

[12]  Raman-Mediated Nonlinear Interactions in Silicon Waveguides: Copropagating and Counterpropagating Pulses , 2009, IEEE Photonics Technology Letters.

[13]  R.M. Osgood,et al.  Theory of Raman-mediated pulsed amplification in silicon-wire waveguides , 2006, IEEE Journal of Quantum Electronics.

[14]  R. Claps,et al.  Observation of stimulated Raman amplification in silicon waveguides , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[15]  G. Agrawal,et al.  Nonlinear optical phenomena in silicon waveguides: modeling and applications. , 2007, Optics express.

[16]  Xiaogang Chen,et al.  Self-phase-modulation in submicron silicon-on-insulator photonic wires. , 2006, Optics express.

[17]  Ivo Rendina,et al.  Advances in silicon-on-insulator optoelectronics , 1998 .

[18]  J. Schneider,et al.  A finite-difference time-domain method applied to anisotropic material , 1993 .

[19]  Malin Premaratne,et al.  Analytical study of optical bistability in silicon-waveguide resonators. , 2009, Optics express.

[20]  G. Agrawal,et al.  Optical switching using nonlinear polarization rotation inside silicon waveguides. , 2009, Optics letters.

[21]  Bahram Jalali,et al.  Can silicon change photonics? , 2008 .

[22]  Allen Taflove,et al.  Computational modeling of femtosecond optical solitons from Maxwell's equations , 1992 .

[23]  Yurii A. Vlasov,et al.  Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires , 2009 .

[24]  Michal Lipson,et al.  All-optical slow-light on a photonic chip. , 2006, Optics express.

[25]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[26]  Hon Ki Tsang,et al.  Nonlinear optical properties of silicon waveguides , 2008 .

[27]  P. N. Butcher,et al.  The Elements of Nonlinear Optics: Preface , 1990 .

[28]  E. Tangdiongga,et al.  Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter , 2006, Journal of Lightwave Technology.

[29]  F. Teixeira Time-Domain Finite-Difference and Finite-Element Methods for Maxwell Equations in Complex Media , 2008, IEEE Transactions on Antennas and Propagation.

[30]  Malin Premaratne,et al.  Analytical study of optical bistability in silicon ring resonators. , 2010, Optics letters.

[31]  N. Suzuki,et al.  FDTD Analysis of Two-Photon Absorption and Free-Carrier Absorption in Si High-Index-Contrast Waveguides , 2007, Journal of Lightwave Technology.

[32]  M. Lipson,et al.  All-optical silicon modulators based on carrier injection by two-photon absorption , 2006, Journal of Lightwave Technology.

[33]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[34]  S. Thompson,et al.  Moore's law: the future of Si microelectronics , 2006 .

[35]  Y. Vlasov,et al.  C-band wavelength conversion in silicon photonic wire waveguides. , 2005, Optics express.

[36]  Y. Vlasov,et al.  Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides. , 2006, Optics express.

[37]  Qianfan Xu,et al.  Carrier-induced optical bistability in silicon ring resonators. , 2006, Optics letters.

[38]  M. Paniccia,et al.  Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. , 2006, Optics express.

[39]  Hiroshi Iwai,et al.  Silicon integrated circuit technology from past to future , 2002, Microelectron. Reliab..

[40]  Allen Taflove,et al.  FDTD Maxwell's equations models for nonlinear electrodynamics and optics , 1997 .

[41]  R. F. Tinder Tensor Properties of Solids , 2008 .

[42]  Xiaogang Chen,et al.  Modulation instability in silicon photonic nanowires. , 2006, Optics letters.

[43]  B. Tatian,et al.  Fitting refractive-index data with the Sellmeier dispersion formula. , 1984, Applied optics.

[44]  R. E. Raab,et al.  Light propagation in cubic and other anisotropic crystals , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[45]  Masahiro Tsuchiya,et al.  High speed logic gate using two-photon absorption in silicon waveguides , 2006 .

[46]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[47]  A. Knights,et al.  Silicon Photonics: An Introduction , 2004 .

[48]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[49]  B Jalali,et al.  Anti-Stokes Raman conversion in silicon waveguides. , 2003, Optics express.

[50]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[51]  Abdel R. Sebak,et al.  3D FDTD method for arbitrary anisotropic materials , 2006 .

[52]  T. Tsuchizawa,et al.  Four-wave mixing in silicon wire waveguides. , 2005, Optics express.

[53]  Jeff F. Young,et al.  Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides , 2004 .

[54]  Qiang Lin,et al.  Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. , 2006, Optics express.

[55]  Mihaela Dinu,et al.  Third-order nonlinearities in silicon at telecom wavelengths , 2003 .

[56]  Qiang Lin,et al.  Soliton fission and supercontinuum generation in silicon waveguides. , 2007, Optics letters.

[57]  R. Kalyanaraman,et al.  Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[58]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[59]  Bahram Jalali,et al.  All optical switching and continuum generation in silicon waveguides. , 2004, Optics express.

[60]  Robert W Boyd,et al.  Optical solitons in a silicon waveguide. , 2007, Optics express.

[61]  Q. Lin,et al.  Anisotropic nonlinear response of silicon in the near-infrared region , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[62]  R. Salem,et al.  Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode , 2005, IEEE Photonics Technology Letters.

[63]  Xiaogang Chen,et al.  Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires. , 2007, Optics express.

[64]  M. Schulz The end of the road for silicon? , 1999, Nature.

[65]  K. Vedam,et al.  Optical Anisotropy of Silicon Single Crystals , 1971 .

[66]  B. Jalali,et al.  Raman-based silicon photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[67]  Fengnian Xia,et al.  Supercontinuum generation in silicon photonic wires , 2007, 2008 IEEE/LEOS Winter Topical Meeting Series.

[68]  G. Agrawal,et al.  Polarization Rotation in Silicon Waveguides: Analytical Modeling and Applications , 2010, IEEE Photonics Journal.

[69]  B. Jalali,et al.  Parametric Raman wavelength conversion in scaled silicon waveguides , 2005, Journal of Lightwave Technology.

[70]  M. Premaratne,et al.  Visualization of electromagnetic-wave polarization evolution using the Poincaré sphere. , 2010, Optics letters.

[71]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[72]  O. Boyraz,et al.  Pulse Compression and Modelocking by Using TPA in Silicon Waveguides , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[73]  M. Först,et al.  Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 mum femtosecond pulses. , 2006, Optics express.

[74]  B. Jalali,et al.  Stimulated Raman scattering in silicon waveguides , 2002 .

[75]  B. Lamontagne,et al.  Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of cladding stress. , 2004, Optics letters.

[76]  B Jalali,et al.  Influence of nonlinear absorption on Raman amplification in Silicon waveguides. , 2004, Optics express.