Genetics of Osteoarthritis.

[1]  R. Tuan,et al.  Tissue Engineering for Musculoskeletal Regeneration and Disease Modeling. , 2021, Handbook of experimental pharmacology.

[2]  R. Aspden,et al.  The influence of adult hip shape genetic variants on adolescent hip shape: Findings from a population-based DXA study , 2020, Bone.

[3]  C. Little,et al.  OATargets: a knowledge base of genes associated with osteoarthritis joint damage in animals , 2020, Annals of the Rheumatic Diseases.

[4]  A. Uitterlinden,et al.  Genome-wide association of phenotypes based on clustering patterns of hand osteoarthritis identify WNT9A as novel osteoarthritis gene , 2020, Annals of the Rheumatic Diseases.

[5]  T. Vincent Of mice and men: converging on a common molecular understanding of osteoarthritis , 2020, The Lancet Rheumatology.

[6]  F. Guilak,et al.  An immortalized human adipose-derived stem cell line with highly enhanced chondrogenic properties. , 2020, Biochemical and biophysical research communications.

[7]  D. Deehan,et al.  Multi‐Tissue Epigenetic and Gene Expression Analysis Combined With Epigenome Modulation Identifies RWDD2B as a Target of Osteoarthritis Susceptibility , 2020, Arthritis & rheumatology.

[8]  N. Bhutani,et al.  Epigenetic Therapies for Osteoarthritis. , 2020, Trends in pharmacological sciences.

[9]  D. Young,et al.  Interplay between genetics and epigenetics in osteoarthritis , 2020, Nature Reviews Rheumatology.

[10]  Chris Wallace,et al.  Improving the coverage of credible sets in Bayesian genetic fine-mapping , 2020, PLoS Comput. Biol..

[11]  J. Loughlin,et al.  Molecular genetic and epigenetic analysis of the osteoarthritis risk residing downstream of the gene TGFB1 , 2020 .

[12]  J. Loughlin,et al.  The molecular genetics and epigenetics of COLGALT2, a risk locus for osteoarthritis , 2020 .

[13]  Neil T. Roach,et al.  Evolutionary Selection and Constraint on Human Knee Chondrocyte Regulation Impacts Osteoarthritis Risk , 2020, Cell.

[14]  D. Deehan,et al.  Multi-tissue epigenetic analysis of the osteoarthritis susceptibility locus mapping to the plectin gene PLEC , 2020, bioRxiv.

[15]  K. Voskarides,et al.  Antagonistic Pleiotropy in Human Disease , 2019, Journal of Molecular Evolution.

[16]  Jacqueline K. White,et al.  Accelerating functional gene discovery in osteoarthritis , 2019, Nature Communications.

[17]  L. Reynard,et al.  Discovery and analysis of methylation quantitative trait loci (mQTLs) mapping to novel osteoarthritis genetic risk signals. , 2019, Osteoarthritis and cartilage.

[18]  L. Wain,et al.  Translational genomics and precision medicine: Moving from the lab to the clinic , 2019, Science.

[19]  Win Min Oo,et al.  Disease modification in osteoarthritis: are we there yet? , 2019, Clinical and experimental rheumatology.

[20]  D. Deehan,et al.  Prioritization of PLEC and GRINA as Osteoarthritis Risk Genes Through the Identification and Characterization of Novel Methylation Quantitative Trait Loci , 2019, Arthritis & rheumatology.

[21]  L. Reynard,et al.  Expression analysis of the osteoarthritis genetic susceptibility mapping to the matrix Gla protein gene MGP , 2019, Arthritis Research & Therapy.

[22]  G. Gibson On the utilization of polygenic risk scores for therapeutic targeting , 2019, PLoS genetics.

[23]  J. V. van Meurs,et al.  Annotating Transcriptional Effects of Genetic Variants in Disease‐Relevant Tissue: Transcriptome‐Wide Allelic Imbalance in Osteoarthritic Cartilage , 2019, Arthritis & rheumatology.

[24]  Tom R. Gaunt,et al.  Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank , 2019, Nature Genetics.

[25]  Helen E. Parkinson,et al.  The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 , 2018, Nucleic Acids Res..

[26]  Alan F. Scott,et al.  OMIM.org: leveraging knowledge across phenotype–gene relationships , 2018, Nucleic Acids Res..

[27]  T. Capellini,et al.  The role of Gdf5 regulatory regions in development of hip morphology , 2018, PloS one.

[28]  D. Gudbjartsson,et al.  Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis , 2018, Nature Genetics.

[29]  D. Lawlor,et al.  Investigation of the Relationship Between Susceptibility Loci for Hip Osteoarthritis and Dual X‐Ray Absorptiometry–Derived Hip Shape in a Population‐Based Cohort of Perimenopausal Women , 2018, Arthritis & rheumatology.

[30]  E. Topol,et al.  The personal and clinical utility of polygenic risk scores , 2018, Nature Reviews Genetics.

[31]  T. Vincent,et al.  Functional Characterization of the Osteoarthritis Genetic Risk Residing at ALDH1A2 Identifies rs12915901 as a Key Target Variant , 2018, Arthritis & rheumatology.

[32]  D. Deehan,et al.  Identification of a novel, methylation-dependent, RUNX2 regulatory region associated with osteoarthritis risk , 2018, Human molecular genetics.

[33]  J. Shendure,et al.  Functional testing of thousands of osteoarthritis-associated variants for regulatory activity , 2018, Nature Communications.

[34]  T. Vincent,et al.  Mechanoadaptation: articular cartilage through thick and thin , 2018, The Journal of physiology.

[35]  Mary E. Haas,et al.  Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations , 2018, Nature Genetics.

[36]  E. Zeggini,et al.  Genome-wide association study of developmental dysplasia of the hip identifies an association with GDF5 , 2018, Communications Biology.

[37]  D. Schaid,et al.  From genome-wide associations to candidate causal variants by statistical fine-mapping , 2018, Nature Reviews Genetics.

[38]  Mazhar Adli,et al.  The CRISPR tool kit for genome editing and beyond , 2018, Nature Communications.

[39]  A. Chen-Plotkin,et al.  The Post-GWAS Era: From Association to Function. , 2018, American journal of human genetics.

[40]  C. Hon,et al.  Chromatin accessibility landscape of articular knee cartilage reveals aberrant enhancer regulation in osteoarthritis , 2018, Scientific Reports.

[41]  Kari Stefansson,et al.  Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis , 2018, Nature Genetics.

[42]  E. Zeggini,et al.  A novel variant in GLIS3 is associated with osteoarthritis , 2018, Annals of the rheumatic diseases.

[43]  T. Capellini,et al.  Impact of broad regulatory regions on Gdf5 expression and function in knee development and susceptibility to osteoarthritis , 2018, Annals of the rheumatic diseases.

[44]  D. Duggan,et al.  Genetic Determinants of Radiographic Knee Osteoarthritis in African Americans , 2017, The Journal of Rheumatology.

[45]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[46]  M. Peters,et al.  Genome-wide association and functional studies identify a role for matrix Gla protein in osteoarthritis of the hand , 2017, Annals of the rheumatic diseases.

[47]  T. Haqqi,et al.  Epigenetics in osteoarthritis: Potential of HDAC inhibitors as therapeutics , 2017, Pharmacological research.

[48]  E. Zeggini,et al.  Evaluation of shared genetic aetiology between osteoarthritis and bone mineral density identifies SMAD3 as a novel osteoarthritis risk locus , 2017, Human molecular genetics.

[49]  T. Capellini,et al.  Ancient selection for derived alleles at a GDF5 enhancer influencing human growth and osteoarthritis risk , 2017, Nature Genetics.

[50]  H. Stefánsson,et al.  Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis , 2017, Nature Genetics.

[51]  Ting Wang,et al.  The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions , 2017, Genome Biology.

[52]  E. Zeggini,et al.  Radiographic endophenotyping in hip osteoarthritis improves the precision of genetic association analysis , 2016, Annals of the rheumatic diseases.

[53]  A. Hofman,et al.  Novel Genetic Variants for Cartilage Thickness and Hip Osteoarthritis , 2016, PLoS genetics.

[54]  E. Zeggini,et al.  Integrative epigenomics, transcriptomics and proteomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis , 2016, Scientific Reports.

[55]  H. Cordell,et al.  Methylation quantitative trait locus analysis of osteoarthritis links epigenetics with genetic risk , 2015, Human molecular genetics.

[56]  L. Reynard,et al.  Correlation of the Osteoarthritis Susceptibility Variants That Map to Chromosome 20q13 With an Expression Quantitative Trait Locus Operating on NCOA3 and With Functional Variation at the Polymorphism rs116855380 , 2015, Arthritis & rheumatology.

[57]  Tim Cootes,et al.  Investigation of Association Between Hip Osteoarthritis Susceptibility Loci and Radiographic Proximal Femur Shape , 2015, Arthritis & rheumatology.

[58]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[59]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[60]  W. Graninger,et al.  Epigenetic differences in human cartilage between mild and severe OA , 2014, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[61]  M. Jeffries,et al.  Genome‐Wide DNA Methylation Study Identifies Significant Epigenomic Changes in Osteoarthritic Cartilage , 2014, Arthritis & rheumatology.

[62]  P. Slagboom,et al.  Knee and hip articular cartilage have distinct epigenomic landscapes: implications for future cartilage regeneration approaches , 2014, Annals of the rheumatic diseases.

[63]  L. Reynard,et al.  Characterization of the Cartilage DNA Methylome in Knee and Hip Osteoarthritis , 2014, Arthritis & rheumatology.

[64]  A. Uitterlinden,et al.  Genome-wide association and functional studies identify a role for IGFBP3 in hip osteoarthritis , 2014, Annals of the rheumatic diseases.

[65]  L. Reynard,et al.  Allelic expression analysis of the osteoarthritis susceptibility locus that maps to chromosome 3p21 reveals cis-acting eQTLs at GNL3 and SPCS1 , 2014, BMC Medical Genetics.

[66]  Kari Stefansson,et al.  Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31 , 2014, Nature Genetics.

[67]  Pedro G. Ferreira,et al.  Transcriptome and genome sequencing uncovers functional variation in humans , 2013, Nature.

[68]  A. Hofman,et al.  A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip , 2013, Annals of the rheumatic diseases.

[69]  N. Oreiro,et al.  Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients , 2013, Annals of the rheumatic diseases.

[70]  A. Uitterlinden,et al.  The DOT1L rs12982744 polymorphism is associated with osteoarthritis of the hip with genome-wide statistical significance in males , 2013, Annals of the rheumatic diseases.

[71]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[72]  Andres Metspalu,et al.  Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study , 2012, The Lancet.

[73]  M. Peters,et al.  Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis , 2012, Proceedings of the National Academy of Sciences.

[74]  Charles E McCulloch,et al.  Variant alleles of the Wnt antagonist FRZB are determinants of hip shape and modify the relationship between hip shape and osteoarthritis. , 2012, Arthritis and rheumatism.

[75]  L. Sandell Etiology of osteoarthritis: genetics and synovial joint development , 2012, Nature Reviews Rheumatology.

[76]  A. Pitsillides,et al.  Cartilage biology in osteoarthritis—lessons from developmental biology , 2011, Nature Reviews Rheumatology.

[77]  A. Hofman,et al.  A variant in MCF2L is associated with osteoarthritis. , 2011, American journal of human genetics.

[78]  A. Hofman,et al.  The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance , 2010, Annals of the rheumatic diseases.

[79]  N. Cox,et al.  Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS , 2010, PLoS genetics.

[80]  Yusuke Nakamura,et al.  New Sequence Variants in HLA Class II/III Region Associated with Susceptibility to Knee Osteoarthritis Identified by Genome-Wide Association Study , 2010, PloS one.

[81]  Bjarni V. Halldórsson,et al.  A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22. , 2010, Arthritis and rheumatism.

[82]  P. Slagboom,et al.  New insights into osteoarthritis: early developmental features of an ageing-related disease , 2008, Current opinion in rheumatology.

[83]  Yusuke Nakamura,et al.  Common variants in DVWA on chromosome 3p24.3 are associated with susceptibility to knee osteoarthritis , 2008, Nature Genetics.

[84]  Yusuke Nakamura,et al.  A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis , 2007, Nature Genetics.

[85]  Dmitri V Zaykin,et al.  Ranks of Genuine Associations in Whole-Genome Scans , 2005, Genetics.

[86]  I. Kaitila,et al.  Identification of COL2A1 gene mutations in patients with chondrodysplasias and familial osteoarthritis. , 1995, Arthritis and rheumatism.

[87]  B. Sykes,et al.  Sibling pair analysis shows no linkage of generalized osteoarthritis to the loci encoding type II collagen, cartilage link protein or cartilage matrix protein. , 1994, British journal of rheumatology.

[88]  R. Moskowitz,et al.  Single base mutation in the type II procollagen gene (COL2A1) as a cause of primary osteoarthritis associated with a mild chondrodysplasia. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[89]  L. Peltonen,et al.  PREDISPOSITION TO FAMILIAL OSTEOARTHROSIS LINKED TO TYPE II COLLAGEN GENE , 1989, The Lancet.

[90]  J J Anderson,et al.  Factors associated with osteoarthritis of the knee in the first national Health and Nutrition Examination Survey (HANES I). Evidence for an association with overweight, race, and physical demands of work. , 1988, American journal of epidemiology.

[91]  T. Hirose,et al.  The Stickler syndrome: evidence for close linkage to the structural gene for type II collagen. , 1987, Genomics.

[92]  A. Cervantes,et al.  HLA and Heberden's nodes in Mexican Mestizos , 1985, Clinical Rheumatology.

[93]  E. Dempster,et al.  Heritability of Threshold Characters. , 1950, Genetics.

[94]  R. Stecher HEBERDEN'S NODES: Heredity in Hypertrophic Arthritis of the Finger Joints , 1941 .

[95]  Y. Okada,et al.  Genetics of rheumatoid arthritis: 2018 status , 2018, Annals of the rheumatic diseases.

[96]  D. Duggan,et al.  Running headline: GWAS of radiographic knee osteoarthritis Title: Genome-wide Association Study of Radiographic Knee Osteoarthritis in North American Caucasians , 2016 .

[97]  T. Spector,et al.  Genetic Influences on Osteoarthritis , 1996 .

[98]  Holger Karas,et al.  TRANSFAC: a database on transcription factors and their DNA binding sites , 1996, Nucleic Acids Res..

[99]  A. Manhire,et al.  HLA-A,B antigens anda1-antitrypsin phenotypes in nodalgeneralised osteoarthritis anderosive osteoarthritis , 1989 .