A generalization of the Hurwitz—Lerch Zeta function

The main object of this paper is to introduce and investigate a mutiple Hurwitz–Lerch Zeta function n(z, s, a), which generalizes the Hurwitz–Lerch Zeta function (z, s, a).We present several interesting properties of this multiple Hurwitz–Lerch Zeta function n(z, s, a), and show how nicely certain classes of series associated with n(z, s, a) can be evaluated by starting with an easily-derivable single identity for n(z, s, a). Relevant connections of some special cases of the results presented here with those obtained in earlier works are also indicated precisely.

[1]  Hari M. Srivastava,et al.  Some relationships between the generalized Apostol–Bernoulli polynomials and Hurwitz–Lerch Zeta functions , 2006 .

[2]  Hiroshi Kumagai,et al.  Sums Involving the Hurwitz Zeta Function , 2001 .

[3]  Hari M. Srivastava,et al.  Some series involving the zeta function , 1995, Bulletin of the Australian Mathematical Society.

[4]  E. Hansen A Table of Series and Products , 1977 .

[5]  Hari M. Srivastava,et al.  Series involving the Zeta function and multiple Gamma functions , 2004, Appl. Math. Comput..

[6]  Shy-Der Lin,et al.  Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations , 2004, Appl. Math. Comput..

[7]  Hari M. Srivastava,et al.  Certain classes of series associated with the Zeta function and multiple gamma functions , 2000 .

[8]  Hari M. Srivastava Sums of certain series of the Riemann zeta function , 1988 .

[9]  Hari M. Srivastava,et al.  Certain Classes of Series Involving the Zeta Function , 1999 .

[10]  I. S. Gradshteyn Table of Integrals, Series and Products, Corrected and Enlarged Edition , 1980 .

[11]  H. M. Srivastava,et al.  Some expansion formulas for a class of generalized Hurwitz–Lerch Zeta functions , 2006 .

[12]  D. P. Verma,et al.  SOME SERIES INVOLVING RIEMANN ZETA FUNCTION , 1983 .

[13]  Hari M. Srivastava,et al.  Series Associated with the Zeta and Related Functions , 2001 .

[14]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions , 1920, Nature.

[15]  Llan Vardi,et al.  Determinants of Laplacians and multiple gamma functions , 1988 .

[16]  Hari M. Srivastava,et al.  AN APPLICATION OF THE THEORY OF THE DOUBLE GAMMA FUNCTION , 1999 .

[17]  Tom M. Apostol,et al.  On the Lerch zeta function. , 1951 .

[18]  Hari M. Srivastava,et al.  A certain family of series associated with the zeta and related functions , 2002 .

[19]  Hari M. Srivastava,et al.  Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials , 2005 .

[20]  J. López,et al.  Asymptotic expansions of the Hurwitz–Lerch zeta function , 2004 .

[21]  Hari M. Srivastava,et al.  Certain families of series associated with the Hurwitz-Lerch Zeta function , 2005, Appl. Math. Comput..

[22]  Hari M. Srivastava,et al.  Sums Associated with the Zeta Function , 1997 .

[23]  A. Voros,et al.  Spectral functions, special functions and the Selberg zeta function , 1987 .

[24]  J. Quine,et al.  Zeta Regularized Products and Functional Determinants on Spheres , 1996 .