Complete Positivity for Mixed Unitary Categories

In this article we generalize the $\CP^\infty$-construction of dagger monoidal categories to mixed unitary categories. Mixed unitary categories provide a setting, which generalizes (compact) dagger monoidal categories and in which one may study quantum processes of arbitrary (infinite) dimensions. We show that the existing results for the $\CP^\infty$-construction hold in this more general setting. In particular, we generalize the notion of environment structures to mixed unitary categories and show that the $\CP^\infty$-construction on mixed unitary categories is characterized by this generalized environment structure.

[1]  Marc de Visme,et al.  Full abstraction for the quantum lambda-calculus , 2019, Proc. ACM Program. Lang..

[2]  Glynn Winskel,et al.  Game semantics for quantum programming , 2019, Proc. ACM Program. Lang..

[3]  Cole Comfort,et al.  Dagger linear logic for categorical quantum mechanics , 2018, Log. Methods Comput. Sci..

[4]  C. Heunen,et al.  Frobenius Structures Over Hilbert C*-Modules , 2017, Communications in Mathematical Physics.

[5]  Aleks Kissinger,et al.  A categorical semantics for causal structure , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[6]  Robert Furber,et al.  Infinite-Dimensionality in Quantum Foundations: W*-algebras as Presheaves over Matrix Algebras , 2017, QPL.

[7]  Stefano Gogioso,et al.  Infinite-dimensional Categorical Quantum Mechanics , 2016, QPL.

[8]  Michele Pagani,et al.  Applying quantitative semantics to higher-order quantum computing , 2013, POPL.

[9]  S. Abramsky Coalgebras, Chu Spaces, and Representations of Physical Systems , 2013, Journal of Philosophical Logic.

[10]  Chris Heunen,et al.  Pictures of complete positivity in arbitrary dimension , 2011, Inf. Comput..

[11]  Samson Abramsky,et al.  H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics , 2010, 1011.6123.

[12]  Samson Abramsky,et al.  Coalgebras, Chu Spaces, and Representations of Physical Systems , 2009, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[13]  Chris Heunen,et al.  Compactly Accessible Categories and Quantum Key Distribution , 2008, Log. Methods Comput. Sci..

[14]  Benoît Valiron,et al.  On a Fully Abstract Model for a Quantum Linear Functional Language: (Extended Abstract) , 2008, QPL.

[15]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[16]  Thomas Ehrhard,et al.  Finiteness spaces , 2005, Mathematical Structures in Computer Science.

[17]  Roberto Maieli,et al.  Modularity of proof-nets , 2005, Arch. Math. Log..

[18]  Richard Blute,et al.  Feedback for linearly distributive categories: traces and fixpoints , 2000 .

[19]  R. A. G. Seely,et al.  Weakly distributive categories , 1997 .

[20]  R. Blute,et al.  Natural deduction and coherence for weakly distributive categories , 1996 .

[21]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[22]  Samson Abramsky,et al.  Big toy models - Representing physical systems as Chu spaces , 2012, Synth..

[23]  M. Barr THE CHU CONSTRUCTION: HISTORY OF AN IDEA , 2006 .

[24]  P. Selinger Towards a semantics for higher-order quantum computation , 2004 .

[25]  Robert R. Schneck Natural deduction and coherence for non-symmetric linearly distributive categories. , 1999 .

[26]  R. Seely,et al.  Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories. , 1997 .

[27]  Vaughan R. Pratt,et al.  Chu Spaces and Their Interpretation as Concurrent Objects , 1995, Computer Science Today.