Si/SiGe QuBus for single electron information-processing devices with memory and micron-scale connectivity function
暂无分享,去创建一个
S. Trellenkamp | H. Bluhm | J. Tu | L. Schreiber | S. Humpohl | Inga Seidler | Tom Struck | Ran Xue | Max Beer
[1] L. Vandersypen,et al. Shuttling an Electron Spin through a Silicon Quantum Dot Array , 2022, PRX Quantum.
[2] S. Trellenkamp,et al. Conveyor-mode single-electron shuttling in Si/SiGe for a scalable quantum computing architecture , 2022, npj Quantum Information.
[3] K. Itoh,et al. Control of dephasing in spin qubits during coherent transport in silicon , 2022, Physical Review B.
[4] N. Focke,et al. Blueprint of a Scalable Spin Qubit Shuttle Device for Coherent Mid-Range Qubit Transfer in Disordered Si/SiGe/SiO2 , 2022, PRX Quantum.
[5] B. P. Wuetz,et al. Universal control of a six-qubit quantum processor in silicon , 2022, Nature.
[6] S. Tarucha,et al. A shuttling-based two-qubit logic gate for linking distant silicon quantum processors , 2022, Nature Communications.
[7] L. Vandersypen,et al. Quantum logic with spin qubits crossing the surface code threshold , 2022, Nature.
[8] J. Petta,et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99% , 2021, Science advances.
[9] J. P. Dehollain,et al. Spiderweb Array: A Sparse Spin-Qubit Array , 2021, Physical Review Applied.
[10] S. Tarucha,et al. Fast universal quantum gate above the fault-tolerance threshold in silicon , 2021, Nature.
[11] S. Simmons,et al. Optical observation of single spins in silicon , 2021, Nature.
[12] Y. Arakawa,et al. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview , 2020 .
[13] A. Wieck,et al. Distant spin entanglement via fast and coherent electron shuttling , 2020, Nature Nanotechnology.
[14] Craig Gidney,et al. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.
[15] P. Santos,et al. Sound-driven single-electron transfer in a circuit of coupled quantum rails , 2019, Nature Communications.
[16] P. T. Eendebak,et al. Loading a quantum-dot based “Qubyte” register , 2019, npj Quantum Information.
[17] H. Bluhm,et al. Transfer of a quantum state from a photonic qubit to a gate-defined quantum dot , 2018, Physical Review B.
[18] J. Petta,et al. Shuttling a single charge across a one-dimensional array of silicon quantum dots , 2018, Nature Communications.
[19] H. Bluhm,et al. Calculation of tunnel couplings in open gate-defined disordered quantum dot systems , 2018, Physical Review B.
[20] Jonas Helsen,et al. A crossbar network for silicon quantum dot qubits , 2017, Science Advances.
[21] Ralf Behr,et al. Robustness of single-electron pumps at sub-ppm current accuracy level , 2017 .
[22] Hillsboro,et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2016, 1612.05936.
[23] S. Hermelin,et al. Fast spin information transfer between distant quantum dots using individual electrons. , 2015, Nature nanotechnology.
[24] L. Schreiber,et al. Simulation of micro-magnet stray-field dynamics for spin qubit manipulation , 2015 .
[25] M. Mariantoni,et al. Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.
[26] C. H. W. Barnes,et al. On-demand single-electron transfer between distant quantum dots , 2011, Nature.
[27] D. A. Ritchie,et al. Single shot charge detection using a radio-frequency quantum point contact , 2007, 0907.1010.
[28] L. Vandersypen,et al. Spins in few-electron quantum dots , 2006, cond-mat/0610433.
[29] Hiroshi Inokawa,et al. Manipulation and detection of single electrons for future information processing , 2005 .