Si/SiGe QuBus for single electron information-processing devices with memory and micron-scale connectivity function

The connectivity within single carrier information-processing devices requires transport and storage of single charge quanta. Our all-electrical Si/SiGe shuttle device, called quantum bus (QuBus), spans a length of 10 $\mathrm{\mu}$m and is operated by only six simply-tunable voltage pulses. It operates in conveyor-mode, i.e. the electron is adiabatically transported while confined to a moving QD. We introduce a characterization method, called shuttle-tomography, to benchmark the potential imperfections and local shuttle-fidelity of the QuBus. The fidelity of the single-electron shuttle across the full device and back (a total distance of 19 $\mathrm{\mu}$m) is $(99.7 \pm 0.3)\,\%$. Using the QuBus, we position and detect up to 34 electrons and initialize a register of 34 quantum dots with arbitrarily chosen patterns of zero and single-electrons. The simple operation signals, compatibility with industry fabrication and low spin-environment-interaction in $^{28}$Si/SiGe, promises spin-conserving transport of spin qubits for quantum connectivity in quantum computing architectures.

[1]  L. Vandersypen,et al.  Shuttling an Electron Spin through a Silicon Quantum Dot Array , 2022, PRX Quantum.

[2]  S. Trellenkamp,et al.  Conveyor-mode single-electron shuttling in Si/SiGe for a scalable quantum computing architecture , 2022, npj Quantum Information.

[3]  K. Itoh,et al.  Control of dephasing in spin qubits during coherent transport in silicon , 2022, Physical Review B.

[4]  N. Focke,et al.  Blueprint of a Scalable Spin Qubit Shuttle Device for Coherent Mid-Range Qubit Transfer in Disordered Si/SiGe/SiO2 , 2022, PRX Quantum.

[5]  B. P. Wuetz,et al.  Universal control of a six-qubit quantum processor in silicon , 2022, Nature.

[6]  S. Tarucha,et al.  A shuttling-based two-qubit logic gate for linking distant silicon quantum processors , 2022, Nature Communications.

[7]  L. Vandersypen,et al.  Quantum logic with spin qubits crossing the surface code threshold , 2022, Nature.

[8]  J. Petta,et al.  Two-qubit silicon quantum processor with operation fidelity exceeding 99% , 2021, Science advances.

[9]  J. P. Dehollain,et al.  Spiderweb Array: A Sparse Spin-Qubit Array , 2021, Physical Review Applied.

[10]  S. Tarucha,et al.  Fast universal quantum gate above the fault-tolerance threshold in silicon , 2021, Nature.

[11]  S. Simmons,et al.  Optical observation of single spins in silicon , 2021, Nature.

[12]  Y. Arakawa,et al.  Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview , 2020 .

[13]  A. Wieck,et al.  Distant spin entanglement via fast and coherent electron shuttling , 2020, Nature Nanotechnology.

[14]  Craig Gidney,et al.  How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.

[15]  P. Santos,et al.  Sound-driven single-electron transfer in a circuit of coupled quantum rails , 2019, Nature Communications.

[16]  P. T. Eendebak,et al.  Loading a quantum-dot based “Qubyte” register , 2019, npj Quantum Information.

[17]  H. Bluhm,et al.  Transfer of a quantum state from a photonic qubit to a gate-defined quantum dot , 2018, Physical Review B.

[18]  J. Petta,et al.  Shuttling a single charge across a one-dimensional array of silicon quantum dots , 2018, Nature Communications.

[19]  H. Bluhm,et al.  Calculation of tunnel couplings in open gate-defined disordered quantum dot systems , 2018, Physical Review B.

[20]  Jonas Helsen,et al.  A crossbar network for silicon quantum dot qubits , 2017, Science Advances.

[21]  Ralf Behr,et al.  Robustness of single-electron pumps at sub-ppm current accuracy level , 2017 .

[22]  Hillsboro,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2016, 1612.05936.

[23]  S. Hermelin,et al.  Fast spin information transfer between distant quantum dots using individual electrons. , 2015, Nature nanotechnology.

[24]  L. Schreiber,et al.  Simulation of micro-magnet stray-field dynamics for spin qubit manipulation , 2015 .

[25]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[26]  C. H. W. Barnes,et al.  On-demand single-electron transfer between distant quantum dots , 2011, Nature.

[27]  D. A. Ritchie,et al.  Single shot charge detection using a radio-frequency quantum point contact , 2007, 0907.1010.

[28]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[29]  Hiroshi Inokawa,et al.  Manipulation and detection of single electrons for future information processing , 2005 .