Learning Commutativity Specifications

In this work we present a new sampling-based “black box” inference approach for learning the behaviors of a library component. As an application, we focus on the problem of automatically learning commutativity specifications of data structures. This is a very challenging problem, yet important, as commutativity specifications are fundamental to program analysis, concurrency control and even lower bounds.

[1]  Keshav Pingali,et al.  Exploiting the commutativity lattice , 2011, PLDI '11.

[2]  Sumit Gulwani,et al.  Oracle-guided component-based program synthesis , 2010, 2010 ACM/IEEE 32nd International Conference on Software Engineering.

[3]  Alexander Aiken,et al.  Verification as Learning Geometric Concepts , 2013, SAS.

[4]  Stephen McCamant,et al.  The Daikon system for dynamic detection of likely invariants , 2007, Sci. Comput. Program..

[5]  Martin C. Rinard,et al.  Verification of semantic commutativity conditions and inverse operations on linked data structures , 2011, PLDI '11.

[6]  Weifeng Liu,et al.  Adaptive and Learning Systems for Signal Processing, Communication, and Control , 2010 .

[7]  Kenneth L. McMillan Relevance heuristics for program analysis , 2008, POPL '08.

[8]  Keshav Pingali,et al.  Optimistic parallelism requires abstractions , 2009, CACM.

[9]  B. Poizat A Course in Model Theory , 2000 .

[10]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[11]  Rachid Guerraoui,et al.  Laws of order: expensive synchronization in concurrent algorithms cannot be eliminated , 2011, POPL '11.

[12]  Deepak Kapur,et al.  Using dynamic analysis to generate disjunctive invariants , 2014, ICSE.

[13]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[14]  William E. Weihl Commutativity-based concurrency control for abstract data types , 1988 .

[15]  Maurice Herlihy,et al.  Transactional boosting: a methodology for highly-concurrent transactional objects , 2008, PPoPP.

[16]  Alexander Aiken,et al.  From invariant checking to invariant inference using randomized search , 2014, Formal Methods Syst. Des..

[17]  Christof Löding,et al.  ICE: A Robust Framework for Learning Invariants , 2014, CAV.

[18]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[19]  Rupak Majumdar,et al.  From Tests to Proofs , 2009, TACAS.

[20]  Dimitar Dimitrov,et al.  Commutativity race detection , 2014, PLDI.

[21]  Jorma Rissanen,et al.  Information and Complexity in Statistical Modeling , 2006, ITW.

[22]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[23]  Ankur Taly,et al.  Automated synthesis of symbolic instruction encodings from I/O samples , 2012, PLDI.