Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 1: Satellite data analysis

[1]  J. Philip THE THEORY OF INFILTRATION: 5. THE INFLUENCE OF THE INITIAL MOISTURE CONTENT , 1957 .

[2]  Field Experiments on the Electroseismic Effect , 1963 .

[3]  E. Matthews Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies , 1983 .

[4]  F. Ulaby,et al.  Active Microwave Soil Moisture Research , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Thomas Schmugge,et al.  Passive Microwave Soil Moisture Research , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[6]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[7]  M. Owe,et al.  Microwave vegetation optical depth and inverse modelling of soil emissivity using Nimbus/SMMR satellite observations , 1994 .

[8]  David M. Le Vine,et al.  Discrete scatter model for microwave radar and radiometer response to corn: comparison of theory and data , 1994, IEEE Trans. Geosci. Remote. Sens..

[9]  F. Melone,et al.  On the interaction between infiltration and Hortonian runoff , 1998 .

[10]  W. Wagner,et al.  A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data , 1999 .

[11]  Catherine Prigent,et al.  Microwave Radiometric Signatures of Different Surface Types in Deserts , 1999 .

[12]  A. Robock,et al.  Satellite remote sensing of soil moisture in Illinois, United States , 1999 .

[13]  Jeffrey P. Walker,et al.  A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index , 2001, IEEE Trans. Geosci. Remote. Sens..

[14]  M. Drinkwater,et al.  The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers , 2002 .

[15]  Keiji Imaoka,et al.  The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies , 2003, IEEE Trans. Geosci. Remote. Sens..

[16]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[17]  R. Koster,et al.  Global Soil Moisture from Satellite Observations, Land Surface Models, and Ground Data: Implications for Data Assimilation , 2004 .

[18]  F. Aires,et al.  Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: Relationship of satellite observations to in situ soil moisture measurements , 2005 .

[19]  F. Aires,et al.  Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: 2. Global statistical relationships , 2005 .

[20]  Li Li,et al.  Global survey and statistics of radio-frequency interference in AMSR-E land observations , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Richard de Jeu,et al.  Analytical derivation of the vegetation optical depth from the microwave polarization difference index , 2005, IEEE Geoscience and Remote Sensing Letters.

[22]  D. Lawrence,et al.  GLACE: The Global Land-Atmosphere Coupling Experiment. Part I: Overview , 2006 .

[23]  Y. Kerr,et al.  L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields , 2007 .

[24]  Dara Entekhabi,et al.  Analysis of evaporative fraction diurnal behaviour , 2007 .

[25]  R. Jeu,et al.  Multisensor historical climatology of satellite‐derived global land surface moisture , 2008 .

[26]  Pierre Gentine,et al.  Spectral behavior of the coupled land-atmosphere system , 2009 .

[27]  R. Jeu,et al.  Land surface temperature from Ka band (37 GHz) passive microwave observations , 2009 .

[28]  B. Hurk,et al.  A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System , 2009 .

[29]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[30]  Kelly Elder,et al.  An Improved Snow Scheme for the ECMWF Land Surface Model: Description and Offline Validation , 2010 .

[31]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[32]  Yi Y. Liu,et al.  Error characterisation of global active and passive microwave soil moisture datasets. , 2010 .

[33]  Dara Entekhabi,et al.  Harmonic propagation of variability in surface energy balance within a coupled soil‐vegetation‐atmosphere system , 2011 .

[34]  N. McDowell,et al.  Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality1[W] , 2011, Plant Physiology.

[35]  Dara Entekhabi,et al.  An Algorithm for Merging SMAP Radiometer and Radar Data for High-Resolution Soil-Moisture Retrieval , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Dara Entekhabi,et al.  The Diurnal Behavior of Evaporative Fraction in the Soil-Vegetation-Atmospheric Boundary Layer Continuum , 2011 .

[37]  Yi Y. Liu,et al.  Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals , 2011 .

[38]  Lifeng Luo,et al.  The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill , 2011 .

[39]  D. Entekhabi,et al.  Relative efficiency of land surface energy balance components , 2012 .

[40]  Hannah L. Cloke,et al.  Land: a global land-surface reanalysis based on ERA-interim meteorological forcing , 2012 .

[41]  C. Prigent,et al.  Synergistic multi‐wavelength remote sensing versus a posteriori combination of retrieved products: Application for the retrieval of atmospheric profiles using MetOp‐A , 2012 .

[42]  Gianpaolo Balsamo,et al.  A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data , 2012 .

[43]  Y. Kerr,et al.  Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations , 2012 .

[44]  P. Dirmeyer,et al.  Dissecting soil moisture‐precipitation coupling , 2012 .

[45]  Zhongbo Su,et al.  Maqu network for validation of satellite-derived soil moisture products , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[46]  Lionel Jarlan,et al.  Impact of a satellite-derived leaf area index monthly climatology in a global numerical weather prediction model , 2013 .

[47]  S. Assouline Infiltration into soils: Conceptual approaches and solutions , 2013 .

[48]  Filipe Aires,et al.  Soil moisture retrieval from multi‐instrument observations: Information content analysis and retrieval methodology , 2013 .

[49]  Fabio Castelli,et al.  Mapping evaporation and estimation of surface control of evaporation using remotely sensed land surface temperature from a constellation of satellites , 2013 .

[50]  Xiaolan Xu,et al.  Normalized Residual Scattering Index Applied to Aquarius L-Band Measurements , 2013, IEEE Geoscience and Remote Sensing Letters.

[51]  S. Seneviratne,et al.  Predictability of soil moisture and streamflow on subseasonal timescales: A case study , 2013 .

[52]  Taikan Oki,et al.  GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis , 2006, Journal of Hydrometeorology.

[53]  F. Aires,et al.  A joint analysis of modeled soil moisture fields and satellite observations , 2013 .

[54]  Philippe Richaume,et al.  Soil moisture retrieval from SMOS observations using neural networks , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[55]  Paolo Ferrazzoli,et al.  Combined use of active and passive microwave satellite data to constrain a discrete scattering model , 2014 .

[56]  N. McDowell,et al.  How do trees die? A test of the hydraulic failure and carbon starvation hypotheses , 2013, Plant, cell & environment.

[57]  Satellite Retrievals of Vegetation Optical Depth Using Time-Series of Dual-Polarized and Single Look-Angle Global Microwave Observations , 2014 .

[58]  Chris Derksen,et al.  Estimating Passive Microwave Brightness Temperature Over Snow-Covered Land in North America Using a Land Surface Model and an Artificial Neural Network , 2014, IEEE Transactions on Geoscience and Remote Sensing.