Slow Star Formation in Dense Gas: Evidence and Implications

It has been known for more than 30 years that star formation in giant molecular clouds (GMCs) is slow, in the sense that only ~1% of the gas forms stars every free-fall time. This result is entirely independent of any particular model of molecular cloud lifetime or evolution. Here we survey observational data on higher density objects in the interstellar medium, including infrared dark clouds and dense molecular clumps, to determine whether these objects form stars slowly like GMCs, or rapidly, converting a significant fraction of their mass into stars in one free-fall time. We find no evidence for a transition from slow to rapid star formation in structures covering 3 orders of magnitude in density. This has important implications for models of star formation, since competing models make differing predictions for the characteristic density at which star formation should transition from slow to rapid. The data are inconsistent with models that predict that star clusters form rapidly and in free-fall collapse. Magnetic- and turbulence-regulated star formation models can reproduce the observations qualitatively, and the turbulence-regulated star formation model of Krumholz & McKee quantitatively reproduces the infrared-HCN luminosity correlation recently reported by Gao & Solomon Slow star formation also implies that the process of star cluster formation cannot be one of global collapse, but must instead proceed over many free-fall times. This suggests that turbulence in star-forming clumps must be driven, and that the competitive accretion mechanism does not operate in typical cluster-forming molecular clumps.

[1]  K. Keil,et al.  Protostars and Planets V , 2007 .

[2]  I. Bonnell,et al.  Star formation through gravitational collapse and competitive accretion , 2006, astro-ph/0604615.

[3]  C. McKee,et al.  Equilibrium Star Cluster Formation , 2006, astro-ph/0603278.

[4]  E. Huff,et al.  Star Formation in Space and Time: The Orion Nebula Cluster , 2006, astro-ph/0603138.

[5]  J. Rathborne,et al.  A Catalog of Midcourse Space Experiment Infrared Dark Cloud Candidates , 2006 .

[6]  D. Schiminovich,et al.  Star Formation in the Nearby Universe: The Ultraviolet and Infrared Points of View , 2006, astro-ph/0601235.

[7]  Zhi-Yun Li,et al.  Cluster Formation in Protostellar Outflow-driven Turbulence , 2005, astro-ph/0512278.

[8]  E. Tasker,et al.  Simulating Star Formation and Feedback in Galactic Disk Models , 2005, astro-ph/0512027.

[9]  The formation of molecular clouds in spiral galaxies , 2006, astro-ph/0602103.

[10]  K. Tassis,et al.  Observational Constraints on the Ages of Molecular Clouds and the Star Formation Timescale: Ambipolar-Diffusion-controlled or Turbulence-induced Star Formation? , 2005, astro-ph/0512043.

[11]  R. Klein,et al.  The formation of stars by gravitational collapse rather than competitive accretion , 2005, Nature.

[12]  P. Solomon,et al.  Connecting Dense Gas Tracers of Star Formation in our Galaxy to High-z Star Formation , 2005, astro-ph/0511424.

[13]  J. Rathborne,et al.  Massive Protostars in the Infrared Dark Cloud MSXDC G034.43+00.24 , 2005, astro-ph/0508458.

[14]  R. Klessen,et al.  Star Formation in Isolated Disk Galaxies. II. Schmidt Laws and Efficiency of Gravitational Collapse , 2005, astro-ph/0508054.

[15]  Jongsoo Kim,et al.  Submitted to ApJL Preprint typeset using L ATEX style emulateapj v. 11/12/01 STAR FORMATION EFFICIENCY IN DRIVEN, SUPERCRITICAL, TURBULENT CLOUDS , 2005 .

[16]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[17]  J. Tan Clustered massive star formation in molecular clouds , 2005, Proceedings of the International Astronomical Union.

[18]  K. Menten,et al.  Initial conditions for massive star birth–Infrared dark clouds , 2005, Proceedings of the International Astronomical Union.

[19]  U. Exeter,et al.  Star formation in unbound giant molecular clouds: the origin of OB associations? , 2005, astro-ph/0503141.

[20]  A. Frank,et al.  Turbulence Driven by Outflow-blown Cavities in the Molecular Cloud of NGC 1333 , 2005, astro-ph/0503167.

[21]  Zhi-Yun Li,et al.  Quiescent Cores and the Efficiency of Turbulence-accelerated, Magnetically Regulated Star Formation , 2005, astro-ph/0502130.

[22]  C. Heiles,et al.  Magnetic fields in diffuse HI and molecular clouds , 2005, astro-ph/0501550.

[23]  R. Klessen,et al.  Star Formation in Isolated Disk Galaxies. I. Models and Characteristics of Nonlinear Gravitational Collapse , 2005, astro-ph/0501022.

[24]  Claus Leitherer,et al.  Optimization of Starburst99 for Intermediate-Age and Old Stellar Populations , 2004, astro-ph/0412491.

[25]  R. Klessen,et al.  Control of Star Formation in Galaxies by Gravitational Instability , 2004, astro-ph/0407247.

[26]  K. Rice,et al.  Protostars and Planets V , 2005 .

[27]  M. Felli,et al.  Massive star birth: A crossroads of Astrophysics , 2005 .

[28]  J. Rathborne,et al.  Infrared Dark Clouds: Precursors to Star Clusters , 2004, astro-ph/0602246.

[29]  R. Klessen,et al.  The Stellar Mass Spectrum from Non-Isothermal Gravoturbulent Fragmentation , 2004, astro-ph/0410351.

[30]  C. Brunt,et al.  The Universality of Turbulence in Galactic Molecular Clouds , 2004, astro-ph/0409420.

[31]  K. Tassis,et al.  Ambipolar-Diffusion Timescale, Star Formation Timescale, and the Ages of Molecular Clouds: Is There a Discrepancy? , 2004, astro-ph/0409089.

[32]  R. Pudritz,et al.  The Formation of Star Clusters I: 3D Simulations of Hydrodynamic Turbulence , 2004, astro-ph/0406122.

[33]  R. Klessen,et al.  Protostellar mass accretion rates from gravoturbulent fragmentation , 2004, astro-ph/0402433.

[34]  Michael L. Norman,et al.  The Formation of Self-Gravitating Cores in Turbulent Magnetized Clouds , 2003, astro-ph/0312622.

[35]  M. Juvela,et al.  The Average Magnetic Field Strength in Molecular Clouds: New Evidence of Super-Alfvénic Turbulence , 2003, astro-ph/0311349.

[36]  I. Bonnell,et al.  Star formation in transient molecular clouds , 2003, astro-ph/0311286.

[37]  P. Solomon,et al.  HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies , 2003, astro-ph/0310341.

[38]  P. Solomon,et al.  The Star Formation Rate and Dense Molecular Gas in Galaxies , 2003, astro-ph/0310339.

[39]  J. Devriendt,et al.  Turbulent Ambipolar Diffusion: Numerical Studies in Two Dimensions , 2003, astro-ph/0309306.

[40]  D. Jaffe,et al.  A CS J = 5 → 4 Mapping Survey Toward High-Mass Star-forming Cores Associated with Water Masers , 2003, astro-ph/0308310.

[41]  I. Bonnell,et al.  The hierarchical formation of a stellar cluster , 2003, astro-ph/0305082.

[42]  Jonathan P. Williams,et al.  High-Resolution Imaging of CO Outflows in OMC-2 and OMC-3 , 2003, astro-ph/0303443.

[43]  R. Klessen,et al.  A Holistic Scenario of Turbulent Molecular Cloud Evolution and Control of the Star Formation Efficiency: First Tests , 2003, astro-ph/0301546.

[44]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[45]  C. McKee,et al.  The Formation of Massive Stars from Turbulent Cores , 2002, astro-ph/0206037.

[46]  Y. Shirley,et al.  The Physical Conditions for Massive Star Formation: Dust Continuum Maps and Modeling , 2002, astro-ph/0207322.

[47]  C. McKee,et al.  Massive star formation in 100,000 years from turbulent and pressurized molecular clouds , 2002, Nature.

[48]  E. Grebel,et al.  Modes of star formation and the origin of field populations : proceedings of a workshop held at Max-Planck Institute of Astronomy, Heidelberg, Germany, 9-13 October 2000 , 2002 .

[49]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[50]  P. Myers,et al.  New OH Zeeman Measurements of Magnetic Field Strengths in Molecular Clouds , 2001, astro-ph/0102469.

[51]  J. Carpenter,et al.  The Equilibrium State of Molecular Regions in the Outer Galaxy , 2001, astro-ph/0101133.

[52]  J. Bruijne,et al.  On the origin of the o and b-type stars with high velocities II runaway stars and pulsars ejected from the nearby young stellar groups , 2000, astro-ph/0010057.

[53]  S. Aarseth,et al.  The formation of a bound star cluster: from the orion nebula cluster to the pleiades , 2000, astro-ph/0009470.

[54]  V. Ossenkopf,et al.  Turbulent velocity structure in molecular clouds , 2000, astro-ph/0012247.

[55]  M. Egan,et al.  Submillimeter Observations of Midcourse Space Experiment Galactic Infrared-Dark Clouds , 2000 .

[56]  F. Palla,et al.  Accelerating Star Formation in Clusters and Associations , 2000 .

[57]  S. Basu Magnetic Fields and the Triaxiality of Molecular Cloud Cores , 2000, astro-ph/0008243.

[58]  C. McKee,et al.  Efficiencies of Low-Mass Star and Star Cluster Formation , 2000, astro-ph/0007383.

[59]  F. Shu,et al.  A Toy Model of Giant Molecular Clouds , 2000 .

[60]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[61]  B. Elmegreen Star Formation in a Crossing Time , 1999, astro-ph/9911172.

[62]  R. Klessen,et al.  The Formation of Stellar Clusters: Gaussian Cloud Conditions. I. , 1999, astro-ph/9904090.

[63]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[64]  Francesco Palla,et al.  Star Formation in the Orion Nebula Cluster , 1999 .

[65]  R. Klessen,et al.  Gravitational Collapse in Turbulent Molecular Clouds. I. Gasdynamical Turbulence , 1999, astro-ph/9911068.

[66]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[67]  Charles J. Lada,et al.  The Origin of Stars and Planetary Systems , 1999 .

[68]  S. Desch,et al.  The Magnetic Decoupling Stage of Star Formation , 2001 .

[69]  Richard M. Crutcher,et al.  Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .

[70]  A. Goodman,et al.  Coherent Dense Cores. I. NH3 Observations , 1998 .

[71]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[72]  Martin G. Cohen,et al.  A Population of Cold Cores in the Galactic Plane , 1998 .

[73]  L. Hillenbrand,et al.  A Preliminary Study of the Orion Nebula Cluster Structure and Dynamics , 1998 .

[74]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[75]  Jonathan P. Williams,et al.  The Luminosity Function of OB Associations in the Galaxy , 1997 .

[76]  R. Plume,et al.  Dense Gas and Star Formation: Characteristics of Cloud Cores Associated with Water Masers , 1996, astro-ph/9609061.

[77]  T. Mouschovias,et al.  Ambipolar Diffusion, Interstellar Dust, and the Formation of Cloud Cores and Protostars. I. Basic Physics and Formulation of the Problem , 1993 .

[78]  M. Skrutskie,et al.  in Protostars and Planets III , 1993 .

[79]  Frank H. Shu,et al.  The physics of astrophysics. , 1992 .

[80]  F. Shu Physics of Astrophysics, Vol. II , 1991 .

[81]  C. McKee Photoionization-regulated Star Formation and the Structure of Molecular Clouds , 1989 .

[82]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[83]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[84]  N. Evans,et al.  Models of Massive Molecular Clouds , 1974 .

[85]  E. Salpeter The Luminosity function and stellar evolution , 1955 .