Molecular mechanisms of Ustilaginoidea virens pathogenicity and their utilization in disease control

[1]  Jing Fan,et al.  Enhanced production of OsRACK1A, an effector-targeted scaffold protein that promotes OsRBOHB-mediated ROS production, confers rice floral resistance to false smut disease without yield penalty. , 2022, Molecular plant.

[2]  D. Lai,et al.  UvSorA and UvSorB Involved in Sorbicillinoid Biosynthesis Contribute to Fungal Development, Stress Response and Phytotoxicity in Ustilaginoidea virens , 2022, International journal of molecular sciences.

[3]  Jing Fan,et al.  SnRK1A-mediated phosphorylation of a cytosolic ATPase positively regulates rice innate immunity and is inhibited by Ustilaginoidea virens effector SCRE1. , 2022, The New phytologist.

[4]  Z. Qi,et al.  The Adaptor Protein UvSte50 Governs Fungal Pathogenicity of Ustilaginoidea virens via the MAPK Signaling Pathway , 2022, Journal of fungi.

[5]  Jing Fan,et al.  Ustilaginoidea virens Nuclear Effector SCRE4 Suppresses Rice Immunity via Inhibiting Expression of a Positive Immune Regulator OsARF17 , 2022, International journal of molecular sciences.

[6]  Pengcheng Zhou,et al.  The bZIP transcription factor UvbZIP6 mediates fungal growth, stress response, and false smut formation in Ustilaginoidea virens , 2022, Phytopathology Research.

[7]  K. Kekesi,et al.  Neuronal-specific septin-3 binds Atg8/LC3B, accumulates and localizes to autophagosomes during induced autophagy , 2022, Cellular and Molecular Life Sciences.

[8]  Junbin Huang,et al.  A secreted fungal subtilase interferes with rice immunity via degradation of SUPPRESSOR OF G2 ALLELE OF skp1. , 2022, Plant physiology.

[9]  Yan Liu,et al.  A lncRNA fine-tunes salicylic acid biosynthesis to balance plant immunity and growth. , 2022, Cell host & microbe.

[10]  Wenxian Sun,et al.  Ustilaginoidea virens secretes a family of phosphatases that stabilize the negative immune regulator OsMPK6 and suppress plant immunity. , 2022, The Plant cell.

[11]  Junbin Huang,et al.  A secreted fungal effector suppresses rice immunity through host histone hypoacetylation. , 2022, The New phytologist.

[12]  Do-Hyung Kim,et al.  Molecular characterization and expression analysis of septin gene family and phagocytic function of recombinant septin 2, 3 and 8 of starry flounder (Platichthys stellatus). , 2022, Fish & shellfish immunology.

[13]  Z. Qi,et al.  The Velvet Protein UvVEA Regulates Conidiation and Chlamydospore Formation in Ustilaginoidea virens , 2022, Journal of fungi.

[14]  Z. Qi,et al.  Autophagy-related protein UvAtg14 contributes to mycelial growth, asexual reproduction, virulence and cell stress response in rice false smut fungus Ustilaginoidea virens , 2022, Phytopathology Research.

[15]  Maiko Umemura,et al.  Tandem repeats in precursor protein stabilize transcript levels and production levels of the fungal ribosomally synthesized and post-translationally modified peptide ustiloxin B. , 2022, Fungal genetics and biology : FG & B.

[16]  J. Giesy,et al.  Global distribution of ustiloxins in rice and their male-biased hepatotoxicity. , 2022, Environmental pollution.

[17]  Z. Qi,et al.  Autophagy-related protein UvAtg7 contributes to mycelial growth, virulence, asexual reproduction and cell stress response in rice false smut fungus Ustilaginoidea virens. , 2022, Fungal genetics and biology : FG & B.

[18]  Haifang Wen,et al.  UvKmt6-mediated H3K27 trimethylation is required for development, pathogenicity, and stress response in Ustilaginoidea virens , 2021, Virulence.

[19]  Z. Fu,et al.  PTI and ETI: convergent pathways with diverse elicitors. , 2021, Trends in plant science.

[20]  Junbin Huang,et al.  Host‐induced gene silencing of fungal‐specific genes of Ustilaginoidea virens confers effective resistance to rice false smut , 2021, Plant biotechnology journal.

[21]  Mo Wang,et al.  High-Quality Genome Sequence Resource of a Rice False Smut Fungus Ustilaginoidea virens Isolate, UV-FJ-1. , 2021, Phytopathology.

[22]  Junbin Huang,et al.  Genome-Wide Identification and Functional Characterization of CCHC-Type Zinc Finger Genes in Ustilaginoidea virens , 2021, Journal of Fungi.

[23]  Liu Yongfeng,et al.  Genome-Wide Identification of Zn2Cys6 Class Fungal-Specific Transcription Factors (ZnFTFs) and Functional Analysis of UvZnFTF1 in Ustilaginoidea virens , 2021, Rice Science.

[24]  M. Yuan,et al.  Engineering false smut resistance rice via host‐induced gene silencing of two chitin synthase genes of Ustilaginoidea virens , 2021, Plant biotechnology journal.

[25]  K. Neelam,et al.  High-resolution mapping of the quantitative trait locus (QTLs) conferring resistance to false smut disease in rice , 2021, Journal of Applied Genetics.

[26]  Wende Liu,et al.  SUN-Family Protein UvSUN1 Regulates the Development and Virulence of Ustilaginoidea virens , 2021, Frontiers in Microbiology.

[27]  Z. Qi,et al.  UvSMEK1, a Suppressor of MEK Null, Regulates Pathogenicity, Conidiation and Conidial Germination in Rice False Smut Fungus Ustilaginoidea virens , 2021 .

[28]  G. Hui,et al.  Higher relative humidity and more moderate temperatures increase the severity of rice false smut disease in the rice–crayfish coculture system , 2021, Food and Energy Security.

[29]  Wenxian Sun,et al.  Versatile Effectors of Phytopathogenic Fungi Target Host Immunity. , 2021, Journal of integrative plant biology.

[30]  Jing Fan,et al.  The Flower-Infecting Fungus Ustilaginoidea virens Subverts Plant Immunity by Secreting a Chitin-Binding Protein , 2021, Frontiers in Plant Science.

[31]  Shuang Wu,et al.  Transcription factor UvMsn2 is important for vegetative growth, conidiogenesis, stress response, mitochondrial morphology and pathogenicity in the rice false smut fungus Ustilaginoidea virens , 2021 .

[32]  Qiutao Xu,et al.  Ustilaginoidea virens modulates lysine 2-hydroxyisobutyrylation in rice flowers during infection. , 2021, Journal of integrative plant biology.

[33]  M. Jena,et al.  Consequences of Ustilaginoidea virens infection, causal agent of false smut disease of rice, on production and grain quality of rice , 2021, Journal of Cereal Science.

[34]  Ziding Zhang,et al.  Insights into genomic evolution from the chromosomal and mitochondrial genomes of Ustilaginoidea virens , 2021 .

[35]  Wenxian Sun,et al.  The N-terminus of an Ustilaginoidea virens Ser-Thr-rich glycosylphosphatidylinositol-anchored protein elicits plant immunity as a MAMP , 2021, Nature Communications.

[36]  Dayong Li,et al.  Ustilaginoidin D induces hepatotoxicity and behaviour aberrations in zebrafish larvae. , 2021, Toxicology.

[37]  Junbin Huang,et al.  Quantitative Proteomics Analysis Reveals the Function of the Putative Ester Cyclase UvEC1 in the Pathogenicity of the Rice False Smut Fungus Ustilaginoidea virens , 2021, International journal of molecular sciences.

[38]  A. Wierzbicki,et al.  Long Noncoding RNAs in Plants. , 2021, Annual review of plant biology.

[39]  Jin-Jin Zhang,et al.  The cyclase-associated protein UvCap1 is required for mycelial growth and pathogenicity in the rice false smut fungus , 2021 .

[40]  C. Tian,et al.  Mitogen-activated protein kinase cascade CgSte50-Ste11-Ste7-Mk1 regulates infection-related morphogenesis in the poplar anthracnose fungus Colletotrichum gloeosporioides. , 2021, Microbiological research.

[41]  Xiaohe Yang,et al.  Proteomic Analysis of Mycelial Exudates of Ustilaginoidea virens , 2021, Pathogens.

[42]  Yaqin Yan,et al.  Comprehensive transcriptome profiling reveals abundant long non-coding RNAs associated with development of the rice false smut fungus, Ustilaginoidea virens. , 2021, Environmental microbiology.

[43]  Junbin Huang,et al.  ATAC-seq Data for Genome-Wide Profiling of Transcription Factor Binding Sites in the Rice False Smut Fungus Ustilaginoidea virens. , 2021, Molecular plant-microbe interactions : MPMI.

[44]  Tomotake Kanki,et al.  Atg43, a novel autophagy-related protein, serves as a mitophagy receptor to bridge mitochondria with phagophores in fission yeast , 2021, Autophagy.

[45]  Junbin Huang,et al.  Comprehensive identification of lysine 2-hydroxyisobutyrylated proteins in Ustilaginoidea virens reveals the involvement of lysine 2-hydroxyisobutyrylation in fungal virulence. , 2021, Journal of integrative plant biology.

[46]  Junbin Huang,et al.  A novel transcription factor UvCGBP1 regulates development and virulence of rice false smut fungus Ustilaginoidea virens , 2021, Virulence.

[47]  Huanbin Shi,et al.  UvWHI2 is Required for Stress Response and Pathogenicity in Ustilaginonidea Virens , 2020, Rice Science.

[48]  X. Meng,et al.  Putative Phosphatase UvPsr1 Is Required for Mycelial Growth, Conidiation, Stress Response and Pathogenicity in Ustilaginonidea virens , 2020 .

[49]  Junbin Huang,et al.  The "pears and lemons" protein UvPal1 regulates development and virulence of Ustilaginoidea virens. , 2020, Environmental microbiology.

[50]  Huanbin Shi,et al.  UvAtg8-Mediated Autophagy Regulates Fungal Growth, Stress Responses, Conidiation, and Pathogenesis in Ustilaginoidea virens , 2020, Rice.

[51]  Shuai Li,et al.  A putative effector UvHrip1 inhibits BAX-triggered cell death in Nicotiana benthamiana, and infection of Ustilaginoidea virens suppresses defense-related genes expression , 2020, PeerJ.

[52]  Junbin Huang,et al.  Ustiloxin A is Produced Early in Experimental Ustilaginoidea virens Infection and Affects Transcription in Rice , 2020, Current Microbiology.

[53]  Lei Wu,et al.  Host‐induced gene silencing of multiple genes of Fusarium graminearum enhances resistance to Fusarium head blight in wheat , 2020, Plant biotechnology journal.

[54]  Jing Fan,et al.  Ustilaginoidea virens: Insights into an Emerging Rice Pathogen. , 2020, Annual review of phytopathology.

[55]  Shuai Li,et al.  The Conserved Effector UvHrip1 Interacts with OsHGW and Infection of Ustilaginoidea virens Regulates Defense- and Heading Date-Related Signaling Pathway , 2020, International journal of molecular sciences.

[56]  C. Tanaka,et al.  An adaptor protein BmSte50 interacts with BmSte11 MAPKKK and is involved in host infection, conidiation, melanization, and sexual development in Bipolaris maydis , 2020 .

[57]  N. Zhang,et al.  The essential effector SCRE1 in Ustilaginoidea virens suppresses rice immunity via a small peptide region , 2020, Molecular plant pathology.

[58]  Li Shuai,et al.  UVI_02019870, a Puptive Effector from Ustilaginoidea virens, Interacts with a Chloroplastic-Like Protein OsCPL1 , 2020 .

[59]  Wenbo Ma,et al.  Natural Host-Induced Gene Silencing Offers New Opportunities to Engineer Disease Resistance. , 2020, Trends in microbiology.

[60]  Junbin Huang,et al.  UvCom1 is an Important Regulator Required for Development and Infection in the Rice False Smut Fungus Ustilaginoidea virens. , 2020, Phytopathology.

[61]  Jing Fan,et al.  The false smut pathogen Ustilaginoidea virens requires rice stamens for false smut ball formation , 2019, Environmental microbiology.

[62]  Tomotake Kanki,et al.  Regulatory Mechanisms of Mitochondrial Autophagy: Lessons From Yeast , 2019, Front. Plant Sci..

[63]  Junbin Huang,et al.  Two protein kinases UvPmk1 and UvCDC2 with significant functions in conidiation, stress response and pathogenicity of rice false smut fungus Ustilaginoidea virens , 2019, Current Genetics.

[64]  Yongfeng Liu,et al.  Genome-wide identification and analysis of the GATA transcription factor gene family in Ustilaginoidea virens. , 2019, Genome.

[65]  Hailing Jin,et al.  Small RNAs - Big Players in Plant-Microbe Interactions. , 2019, Cell host & microbe.

[66]  J. Meng,et al.  Ustilaginoidin M1, a new bis-naphtho-γ-pyrone from the fungus Villosiclava virens , 2019, Natural product research.

[67]  Haifeng Zhang,et al.  The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus Ustilaginoidea virens. , 2019, Fungal genetics and biology : FG & B.

[68]  Kang Zhang,et al.  Towards understanding the biosynthetic pathway for ustilaginoidin mycotoxins in Ustilaginoidea virens. , 2019, Environmental microbiology.

[69]  Huang Shiwen,et al.  Ustilaginoidea virens: A Fungus Infects Rice Flower and Threats World Rice Production , 2019, Rice Science.

[70]  Z. Qi,et al.  A Homeobox Transcription Factor UvHOX2 Regulates Chlamydospore Formation, Conidiogenesis, and Pathogenicity in Ustilaginoidea virens , 2019, Front. Microbiol..

[71]  J. Meng,et al.  Sorbicillinoids From the Fungus Ustilaginoidea virens and Their Phytotoxic, Cytotoxic, and Antimicrobial Activities , 2019, Front. Chem..

[72]  Wenxian Sun,et al.  A Novel Effector Gene SCRE2 Contributes to Full Virulence of Ustilaginoidea virens to Rice , 2019, Front. Microbiol..

[73]  T. Sulea,et al.  The adaptor protein Ste50 directly modulates yeast MAPK signaling specificity through differential connections of its RA domain , 2019, Molecular biology of the cell.

[74]  Jing Fan,et al.  A core effector UV_1261 promotes Ustilaginoidea virens infection via spatiotemporally suppressing plant defense , 2019, Phytopathology Research.

[75]  J. Meng,et al.  Ustilobisorbicillinol A, a Cytotoxic Sorbyl-Containing Aromatic Polyketide from Ustilaginoidea virens. , 2019, Organic letters.

[76]  Yafeng Liang,et al.  Determination of the absolute configurations of the stereogenic centers of ustilaginoidins by studying the biosynthetic monomers from a gene knockout mutant of Villosiclava virens , 2019, Scientific Reports.

[77]  N. Naqvi,et al.  Fungal effectors at the crossroads of phytohormone signaling. , 2018, Current opinion in microbiology.

[78]  Ming Wang,et al.  Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes , 2018, Science.

[79]  Yafeng Liang,et al.  Targeted Deletion of the USTA and UvSLT2 Genes Efficiently in Ustilaginoidea virens With the CRISPR-Cas9 System , 2018, Front. Plant Sci..

[80]  Ming-guo Zhou,et al.  The Autophagy Gene BcATG8 Regulates the Vegetative Differentiation and Pathogenicity of Botrytis cinerea , 2018, Applied and Environmental Microbiology.

[81]  C. Hua,et al.  Trans-Kingdom RNA Silencing in Plant-Fungal Pathogen Interactions. , 2017, Molecular plant.

[82]  P. He,et al.  From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. , 2017, Annual review of phytopathology.

[83]  D. Hofius,et al.  Autophagy as an emerging arena for plant-pathogen interactions. , 2017, Current opinion in plant biology.

[84]  Tom Hsiang,et al.  Pathogenicity Genes in Ustilaginoidea virens Revealed by a Predicted Protein-Protein Interaction Network. , 2017, Journal of proteome research.

[85]  D. Tzamarias,et al.  Ras mutants enhance the ability of cells to anticipate future lethal stressors. , 2017, Biochemical and biophysical research communications.

[86]  Yahui Wang,et al.  Low-affinity iron transport protein Uvt3277 is important for pathogenesis in the rice false smut fungus Ustilaginoidea virens , 2017, Current Genetics.

[87]  Lu Zheng,et al.  Use of Random T-DNA Mutagenesis in Identification of Gene UvPRO1, A Regulator of Conidiation, Stress Response, and Virulence in Ustilaginoidea virens , 2016, Front. Microbiol..

[88]  Jing Fan,et al.  Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease. , 2016, Molecular plant pathology.

[89]  F. Rolland,et al.  The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. , 2016, Journal of experimental botany.

[90]  You-Liang Peng,et al.  Rice false smut fungus hijacks the rice nutrients supply by blocking and mimicking the fertilization of rice ovary. , 2016, Environmental microbiology.

[91]  H. Lalucque,et al.  The PaPsr1 and PaWhi2 genes are members of the regulatory network that connect stationary phase to mycelium differentiation and reproduction in Podospora anserina. , 2016, Fungal genetics and biology : FG & B.

[92]  Huanbin Shi,et al.  Autophagy in plant pathogenic fungi. , 2016, Seminars in cell & developmental biology.

[93]  K. Shin‐ya,et al.  Unveiling the Biosynthetic Pathway of the Ribosomally Synthesized and Post-translationally Modified Peptide Ustiloxin B in Filamentous Fungi. , 2016, Angewandte Chemie.

[94]  Jin-Rong Xu,et al.  UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens , 2016, Scientific Reports.

[95]  M. Zhang,et al.  Identification and Characterization of Plant Cell Death-Inducing Secreted Proteins From Ustilaginoidea virens. , 2016, Molecular plant-microbe interactions : MPMI.

[96]  Jin-Rong Xu,et al.  Functional analysis of the Fusarium graminearum phosphatome. , 2015, The New phytologist.

[97]  Kiyoshi Asai,et al.  Ustiloxins, fungal cyclic peptides, are ribosomally synthesized in Ustilaginoidea virens , 2015, Bioinform..

[98]  Yahui Wang,et al.  Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis. , 2015, Fungal genetics and biology : FG & B.

[99]  Jing Fan,et al.  Infection of Ustilaginoidea virens intercepts rice seed formation but activates grain‐filling‐related genes , 2015, Journal of integrative plant biology.

[100]  David Turrà,et al.  Protein kinases in plant-pathogenic fungi: conserved regulators of infection. , 2014, Annual review of phytopathology.

[101]  Tom Hsiang,et al.  Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics , 2014, Nature Communications.

[102]  Ulrich Stelzl,et al.  Studying post-translational modifications with protein interaction networks. , 2014, Current opinion in structural biology.

[103]  Hsien-Da Huang,et al.  Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways , 2013, Science.

[104]  Colin A. Smith,et al.  Design of a phosphorylatable PDZ domain with peptide-specific affinity changes. , 2013, Structure.

[105]  Wenxian Sun,et al.  Determination and Analysis of Ustiloxins A and B by LC-ESI-MS and HPLC in False Smut Balls of Rice , 2012, International journal of molecular sciences.

[106]  Guanghua Huang,et al.  Alternative Mating Type Configurations (a/α versus a/a or α/α) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways , 2011, PLoS biology.

[107]  S. Gold,et al.  The autophagy genes ATG8 and ATG1 affect morphogenesis and pathogenicity in Ustilago maydis. , 2010, Molecular plant pathology.

[108]  N. Naqvi,et al.  Autophagy-assisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae , 2009, Autophagy.

[109]  S. Guadagnini,et al.  The SUN41 and SUN42 genes are essential for cell separation in Candida albicans , 2007, Molecular microbiology.

[110]  Xinhua Zhao,et al.  Mitogen-Activated Protein Kinase Pathways and Fungal Pathogenesis , 2007, Eukaryotic Cell.

[111]  Jonathan D. G. Jones,et al.  The plant immune system , 2006, Nature.

[112]  H. Saito,et al.  Regulation of the osmoregulatory HOG MAPK cascade in yeast. , 2004, Journal of biochemistry.

[113]  Daisuke Kaida,et al.  Yeast Whi2 and Psr1‐phosphatase form a complex and regulate STRE‐mediated gene expression , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[114]  T. Kataoka,et al.  Association of Yeast Adenylyl Cyclase with Cyclase-Associated Protein CAP Forms a Second Ras-Binding Site Which Mediates Its Ras-Dependent Activation , 2000, Molecular and Cellular Biology.

[115]  Y. Koiso,et al.  Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens. , 1994, The Journal of antibiotics.

[116]  Y. Koiso,et al.  Interaction of ustiloxin A with bovine brain tubulin. , 1994, Biochemical pharmacology.

[117]  H Yaegashi,et al.  "Lupinosis"-like lesions in mice caused by ustiloxin, produced by Ustilaginoieda virens: a morphological study. , 1994, Natural toxins.

[118]  T. Tsuruo,et al.  Cytotoxicity and Antitumor Activities of Fungal Bis (naphtho-γ-pyrone) Derivatives , 1988 .