Symmetric box-splines on the A*n lattice

Sampling and reconstruction of generic multivariate functions is more efficient on non-Cartesian root lattices, such as the BCC (Body-Centered Cubic) lattice, than on the Cartesian lattice. We introduce a new nxn generator matrix A^* that enables, in n variables, efficient reconstruction on the non-Cartesian root lattice A"n^* by a symmetric box-spline family M"r^*. A"2^* is the hexagonal lattice and A"3^* is the BCC lattice. We point out the similarities and differences of M"r^* with respect to the popular Cartesian-shifted box-spline family M"r, document the main properties of M"r^* and the partition induced by its knot planes and construct, in n variables, the optimal quasi-interpolant of M"2^*.

[1]  Lucia Romani,et al.  The mixed directional difference–summation algorithm for generating the Bézier net of a trivariate four-direction Box-spline , 2006, Numerical Algorithms.

[2]  Ramsay Dyer,et al.  Linear and cubic box splines for the body centered cubic lattice , 2004, IEEE Visualization 2004.

[3]  J. Martinet Perfect Lattices in Euclidean Spaces , 2010 .

[4]  R.M. Mersereau,et al.  The processing of hexagonally sampled two-dimensional signals , 1979, Proceedings of the IEEE.

[5]  M. Dæhlen,et al.  Grid point interpolation on finite regions using C 1 box splines , 1992 .

[6]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[7]  Eduard Gröller,et al.  Optimal regular volume sampling , 2001, Proceedings Visualization, 2001. VIS '01..

[8]  Hong Qin,et al.  A new solid subdivision scheme based on box splines , 2002, SMA '02.

[9]  Rong-Qing Jia,et al.  Approximation order from certain spaces of smooth bivariate splines on a three-direction mesh , 1986 .

[10]  Ding-Xuan Zhou,et al.  Cardinal interpolation with shifted three-directional box splines , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  Hans R. Künsch,et al.  Optimal lattices for sampling , 2005, IEEE Transactions on Information Theory.

[12]  C. D. Boor,et al.  Box splines , 1993 .

[13]  Klaus Höllig,et al.  Approximation order from bivariate ¹-cubics: a counterexample , 1983 .

[14]  Jörg Peters,et al.  Box Spline Reconstruction On The Face-Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.

[15]  Ming-Jun Lai,et al.  Fortran subroutines for B-nets of box splines on three- and four-directional meshes , 1992, Numerical Algorithms.

[16]  David Eppstein,et al.  Flipping Cubical Meshes , 2001, Engineering with Computers.

[17]  Charles K. Chui,et al.  Algorithms for generating B-nets and graphically displaying spline surfaces on three- and four-directional meshes , 1991, Comput. Aided Geom. Des..

[18]  Klaus Höllig,et al.  Bivariate box splines and smooth pp functions on a three direction mesh , 1983 .

[19]  A. Bejancu Semi-cardinal interpolation and difference equations: from cubic B-splines to a three-direction box-spline construction , 2006 .

[20]  Hans-Peter Seidel,et al.  Proceedings of the seventh ACM symposium on Solid modeling and applications , 2002 .

[21]  L. J. Cutrona,et al.  The Processing of Hexagonally Sampled Two-Dimensional Signals , 1979 .

[22]  Ramsay Dyer,et al.  From Sphere Packing to the Theory of Optimal Lattice Sampling , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[23]  Rik Van de Walle,et al.  Accepted for Publication in Ieee Transactions on Image Processing Hex-splines: a Novel Spline Family for Hexagonal Lattices , 2022 .

[24]  A.K. Krishnamurthy,et al.  Multidimensional digital signal processing , 1985, Proceedings of the IEEE.

[25]  Alireza Entezari,et al.  Optimal sampling lattices and trivariate box splines , 2007 .

[26]  A. Levin,et al.  Polynomial generation and quasi-interpolation in stationary non-uniform subdivision , 2003, Comput. Aided Geom. Des..

[27]  Daniel Weiskopf,et al.  On visual quality of optimal 3D sampling and reconstruction , 2007, GI '07.

[28]  Dimitri Van De Ville,et al.  Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.

[29]  Klaus Höllig,et al.  Bivariate cardinal interpolation by splines on a three-direction mesh , 1985 .

[30]  Christian Roux,et al.  Discrete Topology of (An*) Optimal Sampling Grids. Interest in Image Processing and Visualization , 2005, Journal of Mathematical Imaging and Vision.

[31]  H. Freudenthal Simplizialzerlegungen von Beschrankter Flachheit , 1942 .

[32]  Charles K. Chui,et al.  Cardinal Interpolation by Multivariate Splines , 1987 .

[33]  Ren-hong Wang,et al.  Spline space and its B-splines on an n + 1 direction mesh in R n , 2002 .

[34]  Hong Qin,et al.  A unified subdivision approach for multi-dimensional non-manifold modeling , 2006, Comput. Aided Des..

[35]  Hartmut Prautzsch,et al.  Box Splines , 2002, Handbook of Computer Aided Geometric Design.