Pattern recognition techniques for Boson Sampling validation

The difficulty of validating large-scale quantum devices, such as Boson Samplers, poses a major challenge for any research program that aims to show quantum advantages over classical hardware. To address this problem, we propose a novel data-driven approach wherein models are trained to identify common pathologies using unsupervised machine learning methods. We illustrate this idea by training a classifier that exploits K-means clustering to distinguish between Boson Samplers that use indistinguishable photons from those that do not. We train the model on numerical simulations of small-scale Boson Samplers and then validate the pattern recognition technique on larger numerical simulations as well as on photonic chips in both traditional Boson Sampling and scattershot experiments. The effectiveness of such method relies on particle-type-dependent internal correlations present in the output distributions. This approach performs substantially better on the test data than previous methods and underscores the ability to further generalize its operation beyond the scope of the examples that it was trained on.

[1]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[2]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[3]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[4]  Scott Aaronson,et al.  Bosonsampling is far from uniform , 2013, Quantum Inf. Comput..

[5]  Andreas Buchleitner,et al.  Statistical benchmark for BosonSampling , 2014, 1410.8547.

[6]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[7]  J. Eisert,et al.  Architectures for quantum simulation showing a quantum speedup , 2017, 1703.00466.

[8]  Yu He,et al.  Time-Bin-Encoded Boson Sampling with a Single-Photon Device. , 2016, Physical review letters.

[9]  Nicolò Spagnolo,et al.  Bayesian approach to Boson sampling validation , 2014 .

[10]  Nathan Wiebe,et al.  Using Quantum Computing to Learn Physics , 2014, Bull. EATCS.

[11]  Nicolò Spagnolo,et al.  Is my boson sampler working , 2016 .

[12]  Scott Aaronson,et al.  BosonSampling with Lost Photons , 2015, ArXiv.

[13]  Raphaël Clifford,et al.  The Classical Complexity of Boson Sampling , 2017, SODA.

[14]  J. O'Brien,et al.  On the experimental verification of quantum complexity in linear optics , 2013, Nature Photonics.

[15]  Nicolò Spagnolo,et al.  General rules for bosonic bunching in multimode interferometers. , 2013, Physical review letters.

[16]  Andreas Buchleitner,et al.  Stringent and efficient assessment of boson-sampling devices. , 2013, Physical review letters.

[17]  Ashley Montanaro,et al.  Achieving quantum supremacy with sparse and noisy commuting quantum computations , 2016, 1610.01808.

[18]  Xiao Jiang,et al.  Toward Scalable Boson Sampling with Photon Loss. , 2018, Physical review letters.

[19]  Andrea Crespi,et al.  Suppression laws for multiparticle interference in Sylvester interferometers , 2015, 1502.06372.

[20]  Gregor Weihs,et al.  Totally Destructive Many-Particle Interference. , 2018, Physical review letters.

[21]  L. Duan,et al.  Quantum Supremacy for Simulating a Translation-Invariant Ising Spin Model. , 2016, Physical review letters.

[22]  Ashley Montanaro,et al.  Average-case complexity versus approximate simulation of commuting quantum computations , 2015, Physical review letters.

[23]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[24]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[25]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[26]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[27]  Nicolò Spagnolo,et al.  Three-photon bosonic coalescence in an integrated tritter , 2012, Nature Communications.

[28]  Fabio Sciarrino,et al.  Experimental generalized quantum suppression law in Sylvester interferometers , 2017, 1705.08650.

[29]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[30]  R. Feynman Simulating physics with computers , 1999 .

[31]  V S Shchesnovich,et al.  Universality of Generalized Bunching and Efficient Assessment of Boson Sampling. , 2015, Physical review letters.

[32]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[33]  Fabio Sciarrino,et al.  Optimal photonic indistinguishability tests in multimode networks. , 2017, Science bulletin.

[34]  Nathan Wiebe,et al.  Experimental statistical signature of many-body quantum interference , 2018 .

[35]  Raphaël Clifford,et al.  Classical boson sampling algorithms with superior performance to near-term experiments , 2017, Nature Physics.

[36]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[37]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[39]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[40]  P. Simon Too Big to Ignore: The Business Case for Big Data , 2013 .

[41]  Yong-Jian Gu,et al.  A certification scheme for the boson sampler , 2016 .

[42]  Nicolò Spagnolo,et al.  Suppression law of quantum states in a 3D photonic fast Fourier transform chip , 2016, Nature Communications.

[43]  Gregor Weihs,et al.  Many-body quantum interference on hypercubes , 2016, 1607.00836.

[44]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[45]  L. Duan,et al.  Scalable implementation of boson sampling with trapped ions. , 2013, Physical review letters.

[46]  Andrew G. White,et al.  Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source. , 2016, Physical review letters.

[47]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[48]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[49]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[50]  W Steven Kolthammer,et al.  Distinguishability and Many-Particle Interference. , 2016, Physical review letters.

[51]  J. Eisert,et al.  Reliable quantum certification of photonic state preparations , 2014, Nature Communications.

[52]  Christian Schneider,et al.  High-efficiency multiphoton boson sampling , 2017, Nature Photonics.

[53]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[54]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[55]  Yoshua Bengio,et al.  Convergence Properties of the K-Means Algorithms , 1994, NIPS.

[56]  A Laing,et al.  Boson sampling from a Gaussian state. , 2014, Physical review letters.