A particle filtering framework for randomized optimization algorithms

We propose a framework for optimization problems based on particle filtering (also called Sequential Monte Carlo method). This framework unifies and provides new insight into randomized optimization algorithms. The framework also sheds light on developing new optimization algorithms through the freedom in the framework and the various improving techniques for particle filtering.

[1]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[2]  J. A. Lozano,et al.  Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness and Soft Computing) , 2006 .

[3]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[4]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[5]  Mauro Birattari,et al.  Model-Based Search for Combinatorial Optimization: A Critical Survey , 2004, Ann. Oper. Res..

[6]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[7]  Petar M. Djuric,et al.  Gaussian sum particle filtering , 2003, IEEE Trans. Signal Process..

[8]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[9]  Pedro Larrañaga,et al.  Towards a New Evolutionary Computation - Advances in the Estimation of Distribution Algorithms , 2006, Towards a New Evolutionary Computation.

[10]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[11]  Dirk P. Kroese,et al.  The Cross Entropy Method: A Unified Approach To Combinatorial Optimization, Monte-carlo Simulation (Information Science and Statistics) , 2004 .

[12]  Reuven Y. Rubinstein,et al.  Optimization of computer simulation models with rare events , 1997 .

[13]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[14]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[15]  Michael C. Fu,et al.  Solving Continuous-State POMDPs via Density Projection , 2010, IEEE Transactions on Automatic Control.

[16]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[17]  Michael C. Fu,et al.  A Model Reference Adaptive Search Method for Global Optimization , 2007, Oper. Res..

[18]  Lih-Yuan Deng,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning , 2006, Technometrics.

[19]  Qingfu Zhang,et al.  On the convergence of a class of estimation of distribution algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[20]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..