A dual-stage sodium thermal electrochemical converter (Na-TEC)
暂无分享,去创建一个
Andrei G. Fedorov | Andrey Gunawan | Shannon K. Yee | Peter A. Kottke | A. Fedorov | Seung Woo Lee | S. Yee | P. Kottke | Andrey Gunawan | Alexander Limia | J. Ha | Alexander Limia | Jong Min Ha
[1] Cronin B. Vining,et al. Thermophysical properties of sodium β″-alumina polycrystalline ceramic , 1994 .
[2] J. Shan,et al. Accident analysis of heat pipe cooled and AMTEC conversion space reactor system , 2016 .
[3] M. Izenson,et al. Performance of a wick return AMTEC cell with a micromachined condenser , 1994 .
[4] R. Stieglitz,et al. Flow measurement techniques in heavy liquid metals , 2010 .
[5] P. Ptáček. Strontium Aluminate - Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Applications , 2014 .
[6] Kevin P. Galvin,et al. A conceptually simple derivation of the Kelvin equation (short communication) , 2005 .
[7] T. Cole,et al. High efficiency thermoelectric conversion with beta″-alumina electrolytes, the sodium heat engine , 1981 .
[8] S. Yoda,et al. Thermophysical properties of vanadium at high temperature measured with an electrostatic levitation furnace , 2002 .
[9] Lianmin Huang,et al. Performance analysis of a multitube vapor-anode AMTEC cell , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).
[10] Shannon K. Yee,et al. Challenges and progress on the modelling of entropy generation in porous media: A review , 2017 .
[11] C. F. Curtiss,et al. Thermal Conductivity of Multicomponent Gas Mixtures , 1958 .
[12] C. P. Bankston,et al. Kinetics and transport at AMTEC electrodes. II - Temperature dependence of the interfacial impedance of Na(g)/porous Mo/Na-Beta-double prime alumina , 1990 .
[13] Lan Xiao,et al. Parametric study on flow and heat transfer characteristics of porous wick evaporator based on AMTEC , 2012 .
[14] C. A. Busse,et al. Wetting by sodium at high temperatures in pure vapour atmosphere , 1977 .
[15] Mohamed S. El-Genk,et al. An analytical model for liquid-anode and vapor-anode AMTEC converters , 1997 .
[16] Thomas K. Hunt,et al. Study of costs for a 1 kWe Sodium Heat Engine/AMTEC system , 1992 .
[17] M. D. Rooij,et al. Electrochemical Methods: Fundamentals and Applications , 2003 .
[18] David P. Kennedy,et al. Spreading Resistance in Cylindrical Semiconductor Devices , 1960 .
[19] Mohamed S. El-Genk,et al. Review of Refractory Materials for Alkali Metal Thermal-to-Electric Conversion Cells , 2001 .
[20] Chendong Huang,et al. Quantifying and minimizing entropy generation in AMTEC cells , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).
[21] H. Feder,et al. SOLUBILITY OF HELIUM AND ARGON IN LIQUID SODIUM. , 1971 .
[22] V. S. Vaidhyanathan,et al. Transport phenomena , 2005, Experientia.
[23] Yingru Zhao,et al. The optimal operation states and parametric choice strategies of a DCFC-AMTEC coupling system with high efficiency , 2019, Energy Conversion and Management.
[24] J. Whitelaw,et al. Convective heat and mass transfer , 1966 .
[25] J. Parlange. Porous Media: Fluid Transport and Pore Structure , 1981 .
[26] S. Scherrer,et al. Direct energy conversion of heat to electricity using AMTEC , 2015, 2015 5th International Youth Conference on Energy (IYCE).
[27] F. Dullien,et al. Mercury porosimetry curves of sandstones. Mechanisms of mercury penetration and withdrawal , 1981 .
[28] Kent S. Udell,et al. Heat transfer in porous media considering phase change and capillarity—the heat pipe effect , 1985 .
[29] Brian Straughan,et al. Convection in Porous Media , 2008 .
[30] V. Ganesan,et al. Corrosion of annealed AISI 316 stainless steel in sodium environment , 1998 .
[31] Jianqiang Shan,et al. Reliability and loading-following studies of a heat pipe cooled, AMTEC conversion space reactor power system , 2019, Annals of Nuclear Energy.
[32] M. Lodhi,et al. Design and material variation for an improved power output of AMTEC cells , 2001 .
[33] R. P. Mayer,et al. Mercury Porosimetry: Filling of Toroidal Void Volume Following Breakthrough between Packed Spheres , 1966 .
[34] Barry N. Taylor,et al. Guidelines for Evaluating and Expressing the Uncertainty of Nist Measurement Results , 2017 .
[35] Dmitry V. Paramonov,et al. Novel, Integrated Reactor/Power Conversion System (LMR-AMTEC) , 2001 .
[36] C. P. Bankston,et al. Kinetics and transport at AMTEC electrodes. I - The interfacial impedance model. [alkali metal thermoelectric converters] , 1990 .
[37] D. G. Huizenga,et al. Knudesen diffusion in random assemblages of uniform spheres , 1986 .
[38] Alfred Schock,et al. Coupled thermal, electrical, and fluid flow analyses of AMTEC converters, with illustrative application to OSC's cell design , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).
[39] Helena L. Chum,et al. Review of thermally regenerative electrochemical systems , 1981 .
[40] Xiaochen Lu,et al. Analysis of the performance of an alkali metal thermoelectric converter (AMTEC) based on a lumped thermal-electrochemical model , 2018 .
[41] A. Onea,et al. AMTEC clusters for power generation in a concentrated solar power plant. , 2015 .
[42] M.A.K. Lodhi,et al. Optimization of the TIEC/AMTEC cascade cell for high efficiency , 2006 .
[43] A. Bejan. Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes , 1995 .
[44] M.A.K. Lodhi,et al. Simulation and analysis of time-dependent degradation behavior of AMTEC , 2001 .
[45] Neill Weber,et al. A thermoelectric device based on beta-alumina solid electrolyte , 1974 .
[46] A. Hollenkamp,et al. Emerging electrochemical energy conversion and storage technologies , 2014, Front. Chem..
[47] Mohamed S. El-Genk,et al. Radiation/conduction model for multitube AMTEC cells , 2008 .
[48] M. H. Kamdar,et al. Embrittlement by liquid metals , 1973 .
[49] Mohamed S. El-Genk,et al. Performance analysis of Pluto/Express, multitube AMTEC cells , 1999 .
[50] N. Wakao,et al. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds , 1978 .
[51] M. Makansi,et al. Determination of the Vapor Pressure of Sodium , 1955 .
[52] R. Ewell,et al. Experimental and Systems Studies of the Alkali Metal Thermoelectric Converter for Aerospace Power , 1983 .
[53] W. G. Pollard,et al. On Gaseous Self-Diffusion in Long Capillary Tubes , 1948 .
[54] L. Pisani. Simple Expression for the Tortuosity of Porous Media , 2011 .
[55] M. Dresselhaus,et al. Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .
[56] Louis Gosselin,et al. Heat transfer in upper part of electrolytic cells: Thermal circuit and sensitivity analysis , 2013 .
[57] Zhangxin Chen,et al. Critical review of the impact of tortuosity on diffusion , 2007 .
[58] A. Majumdar. Thermoelectricity in Semiconductor Nanostructures , 2004, Science.
[59] Jan E. Pantolin,et al. Operation of Low Temperature AMTEC Cells , 1992 .
[60] Michael G. Izenson,et al. Condensation of sodium on a micromachined surface for AMTEC , 1993 .
[61] D. Gautam. Characterization of the conduction properties of alkali metal ion conducting solid electrolytes using thermoelectric measurements , 2006 .
[62] M. Rodríguez-Valverde,et al. Derivation of Jurin's law revisited , 2010 .
[63] Evelyn N. Wang,et al. Electrically induced drop detachment and ejection , 2016 .
[64] A. Fedorov,et al. Thermal modeling and efficiency of a dual-stage sodium heat engine , 2018, Applied Thermal Engineering.
[65] T. Kumada,et al. Diffusion Coefficients of Sodium Vapors in Argon and Helium , 1979 .
[66] J. Cuevas,et al. Radiative Heat Transfer , 2018, ACS Photonics.
[67] W. D. Manly,et al. Corrosion Resistance of Metals and Alloys to Sodium and Lithium , 1957 .
[68] M.A.K. Lodhi,et al. Effect of geometrical variations on AMTEC cell heat losses , 2000 .
[69] Hans Rumpf,et al. Einflüsse der Porosität und Korngrößenverteilung im Widerstandsgesetz der Porenströmung , 1971 .
[70] M.S. El-Genk,et al. Vacuum testing of high efficiency multi-base tube AMTEC cells , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).
[71] D. Nield. Resolution of a Paradox Involving Viscous Dissipation and Nonlinear Drag in a Porous Medium , 2000 .
[72] Minggao Ouyang,et al. A model predicting performance of proton exchange membrane fuel cell stack thermal systems , 2004 .
[73] V. Carey. Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Third Edition , 2020 .
[74] Terry J. Hendricks,et al. High-Performance Radial AMTEC Cell Design for Ultra-High-Power Solar AMTEC Systems , 2000 .
[75] Shuang-Ying Wu,et al. Phase change heat transfer characteristics of porous wick evaporator with bayonet tube and alkali metal as working fluid , 2018 .
[76] Mohamed S. El-Genk,et al. Capillary Limit of Evaporator Wick in Alkali Metal Thermal-to-Electric Converters , 2002 .
[77] A. Onea,et al. Design and construction of the ATEFA facility for experimental investigations of AMTEC test modules , 2017 .
[78] Ioannis Chatzis,et al. A New Technique to Measure the Breakthrough Capillary Pressure , 2005 .
[79] Clay Mayberry,et al. Experimental investigation of multi-AMTEC cell ground demonstration converter systems based on PX-3 and PX-5 series AMTEC cells , 2008 .
[80] Margaret A. K. Ryan,et al. Reversible Thermodynamic Cycle for AMTEC Power Conversion , 1992 .
[81] Shannon K. Yee,et al. $ per W metrics for thermoelectric power generation: beyond ZT , 2013 .
[82] C. A. Borkowski,et al. Parasitic heat loss reduction in AMTEC cells by heat shield optimization , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).
[83] Yayuan Liu,et al. Fundamental study on the wetting property of liquid lithium , 2018, Energy Storage Materials.
[84] Robert K. Sievers,et al. 500 Watt Solar AMTEC Power System for Small Spacecraft. , 1995 .
[85] Peter Kuster,et al. Principles Of Heat Transfer In Porous Media , 2016 .
[86] R. P. Mayer,et al. Mercury porosimetry—breakthrough pressure for penetration between packed spheres , 1965 .
[87] Duncan A. MacInnes,et al. The principlēs of electrochemistry , 1944 .
[88] Amir Fartaj,et al. A pseudo 3D electrochemical-thermal modeling and analysis of a lithium-ion battery for electric vehicle thermal management applications , 2017 .
[89] I. Mutoh,et al. Sodium corrosion behavior of austenitic alloys and selective dissolution of chromium and nickel , 1986 .
[90] Mohamed S. El-Genk,et al. “SAIRS” — Scalable Amtec Integrated Reactor space power System , 2004 .
[91] Paul R. Shearing,et al. On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems , 2016 .
[92] Alexander Schwartz,et al. Fundamentals Of Engineering Thermodynamics , 2016 .
[93] Mohamed S. El-Genk,et al. Sodium vapor pressure losses in a multitube, alkali-metal thermal-to-electric converter , 1999 .
[94] E. Wachsman,et al. Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.
[95] S. M. Ghiaasiaan. TWO-PHASE FLOW, BOILING AND CONDENSATION IN CONVENTIONAL AND MINIATURE SYSTEMS , 2007 .
[96] J. Higdon,et al. Permeability of three-dimensional models of fibrous porous media , 1996, Journal of Fluid Mechanics.
[97] Robert K. Sievers,et al. AMTEC/SHE for space nuclear power applications , 2008 .
[98] K. Tsuchida,et al. Ceramic electrodes for an alkali metal thermo-electric converter (AMTEC) , 1993 .
[99] H. Khalkhali,et al. Entropy Generation in Heat Pipe System , 1996, Thermal Science of Advanced Steam Generators/Heat Exchangers.
[100] P. Cheng,et al. Thermal dispersion in a porous medium , 1990 .
[101] A. Abdel-azim. Fundamentals of Heat and Mass Transfer , 2011 .
[102] Robert K. Sievers,et al. AMTEC radioisotope power system design and analysis for Pluto Express Fly-By , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).
[103] J. Fergus. Ion transport in sodium ion conducting solid electrolytes , 2012 .
[104] Marten G. Barker,et al. THe corrosion of chromium, iron, and stainless steel in liquid sodium , 1974 .
[105] Optimization of liquid-return artery in a vapor-anode, multitube AMTEC , 2008 .
[106] J. Tournier,et al. An electric model of a vapour anode, multitube alkali–metal thermal-to-electric converter , 1999 .
[107] S. Rhi,et al. Study on the Characteristics of an Alkali-Metal Thermoelectric Power Generation System , 2015, Journal of Electronic Materials.
[108] James L. Beck,et al. Convection in a box of porous material saturated with fluid , 1972 .
[109] E. L. Dunning. THE THERMODYNAMIC AND TRANSPORT PROPERTIES OF SODIUM AND SODIUM VAPOR , 1960 .
[110] G. Turner. LIQUID METAL FLOW MEASUREMENT (SODIUM) STATE-OF-THE-ART STUDY. , 1968 .
[111] Evelyn N Wang,et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. , 2012, Nano letters.
[112] Mohamed S. El-Genk,et al. A thermal model of the conical evaporator in Pluto/Express, multi-tube AMTEC cells , 2008 .
[113] M. Vanderhaegen,et al. A Review on Sodium Boiling Phenomena in Reactor Systems , 2014 .
[114] L. Leibowitz,et al. Thermodynamic and transport properties of sodium liquid and vapor , 1995 .
[115] J. Baret,et al. Electrowetting: from basics to applications , 2005 .
[116] Entropy minimization in micro-scale evaporating thin liquid film in capillary tubes , 2008 .
[117] J. Tournier,et al. AMTEC Performance and Evaluation Analysis Model (APEAM): Comparison with test results of PX-4C, PX-5A, and PX-3A cells , 2008 .
[118] John R. Howell,et al. A catalog of radiation configuration factors , 1982 .
[119] G. Vignoles. Modelling binary, Knudsen and transition regime diffusion inside complex porous media , 1995 .
[120] C. B. Vining. An inconvenient truth about thermoelectrics. , 2009, Nature materials.
[121] Lan Xiao,et al. A review on advances in alkali metal thermal to electric converters (AMTECs) , 2009 .
[123] J. Kennedy,et al. The β-aluminas , 1977 .
[124] Joeri Van Mierlo,et al. Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation , 2017 .
[125] E. H. Kennard. Kinetic theory of gases, with an introduction to statistical mechanics , 1938 .
[126] S. Kim,et al. Effects of the Darcy number, the Prandtl number, and the Reynolds number on local thermal non-equilibrium , 2002 .
[127] Edward A. Mason,et al. Thermal Conductivity of Multicomponent Gas Mixtures. II , 1958 .
[128] Michael Schuller,et al. Vacuum testing of high efficiency multi-base tube AMTEC cells: February 1997–October 1997 , 2008 .
[129] M. Khayet. Membranes and theoretical modeling of membrane distillation: a review. , 2011, Advances in colloid and interface science.
[130] Lan Xiao,et al. A parabolic dish/AMTEC solar thermal power system and its performance evaluation , 2010 .
[131] Massoud Kaviany,et al. Propagation of condensation front in steam injection into dry porous media , 1995 .
[132] Shuang-Ying Wu,et al. A new AMTEC/TAR hybrid system for power and cooling cogeneration , 2019, Energy Conversion and Management.
[133] Mohamed S. El-Genk,et al. Radiation heat transfer in multitube, alkali-metal thermal-to-electric converter , 1999 .
[134] T. Cole,et al. Thermoelectric Energy Conversion with Solid Electrolytes , 1983, Science.
[135] R. Cerbino. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2006 .
[136] S. Patankar,et al. Mathematical modeling of heat transfer, condensation, and capillary flow in porous insulation on a cold pipe , 2004 .
[137] Mohamed S. El-Genk,et al. AMTEC/TE static converters for high energy utilization, small nuclear power plants , 2004 .