A dual-stage sodium thermal electrochemical converter (Na-TEC)

Abstract The sodium thermal electrochemical converter (Na-TEC) is a heat engine that generates electricity through the isothermal expansion of sodium ions. The Na-TEC is a closed system that can theoretically achieve conversion efficiencies above 45% when operating between thermal reservoirs at 1150 K and 550 K. However, thermal designs have confined previous single-stage devices to thermal efficiencies below 20%. To mitigate some of these limitations, we consider dividing the isothermal expansion into two stages; one at the evaporator temperature (1150 K) and another at an intermediate temperature (650 K–1050 K). This dual-stage Na-TEC takes advantage of regeneration and reheating, and could be amenable to better thermal management. Herein, we demonstrate how the dual-stage device can improve the efficiency by up to 8% points over the best performing single-stage device. We also establish an application regime map for the single- and dual-stage Na-TEC in terms of the power density and the total thermal parasitic loss. Generally, a single-stage Na-TEC should be used for applications requiring high power densities, whereas a dual-stage Na-TEC should be used for applications requiring high efficiency.

[1]  Cronin B. Vining,et al.  Thermophysical properties of sodium β″-alumina polycrystalline ceramic , 1994 .

[2]  J. Shan,et al.  Accident analysis of heat pipe cooled and AMTEC conversion space reactor system , 2016 .

[3]  M. Izenson,et al.  Performance of a wick return AMTEC cell with a micromachined condenser , 1994 .

[4]  R. Stieglitz,et al.  Flow measurement techniques in heavy liquid metals , 2010 .

[5]  P. Ptáček Strontium Aluminate - Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Applications , 2014 .

[6]  Kevin P. Galvin,et al.  A conceptually simple derivation of the Kelvin equation (short communication) , 2005 .

[7]  T. Cole,et al.  High efficiency thermoelectric conversion with beta″-alumina electrolytes, the sodium heat engine , 1981 .

[8]  S. Yoda,et al.  Thermophysical properties of vanadium at high temperature measured with an electrostatic levitation furnace , 2002 .

[9]  Lianmin Huang,et al.  Performance analysis of a multitube vapor-anode AMTEC cell , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[10]  Shannon K. Yee,et al.  Challenges and progress on the modelling of entropy generation in porous media: A review , 2017 .

[11]  C. F. Curtiss,et al.  Thermal Conductivity of Multicomponent Gas Mixtures , 1958 .

[12]  C. P. Bankston,et al.  Kinetics and transport at AMTEC electrodes. II - Temperature dependence of the interfacial impedance of Na(g)/porous Mo/Na-Beta-double prime alumina , 1990 .

[13]  Lan Xiao,et al.  Parametric study on flow and heat transfer characteristics of porous wick evaporator based on AMTEC , 2012 .

[14]  C. A. Busse,et al.  Wetting by sodium at high temperatures in pure vapour atmosphere , 1977 .

[15]  Mohamed S. El-Genk,et al.  An analytical model for liquid-anode and vapor-anode AMTEC converters , 1997 .

[16]  Thomas K. Hunt,et al.  Study of costs for a 1 kWe Sodium Heat Engine/AMTEC system , 1992 .

[17]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[18]  David P. Kennedy,et al.  Spreading Resistance in Cylindrical Semiconductor Devices , 1960 .

[19]  Mohamed S. El-Genk,et al.  Review of Refractory Materials for Alkali Metal Thermal-to-Electric Conversion Cells , 2001 .

[20]  Chendong Huang,et al.  Quantifying and minimizing entropy generation in AMTEC cells , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[21]  H. Feder,et al.  SOLUBILITY OF HELIUM AND ARGON IN LIQUID SODIUM. , 1971 .

[22]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[23]  Yingru Zhao,et al.  The optimal operation states and parametric choice strategies of a DCFC-AMTEC coupling system with high efficiency , 2019, Energy Conversion and Management.

[24]  J. Whitelaw,et al.  Convective heat and mass transfer , 1966 .

[25]  J. Parlange Porous Media: Fluid Transport and Pore Structure , 1981 .

[26]  S. Scherrer,et al.  Direct energy conversion of heat to electricity using AMTEC , 2015, 2015 5th International Youth Conference on Energy (IYCE).

[27]  F. Dullien,et al.  Mercury porosimetry curves of sandstones. Mechanisms of mercury penetration and withdrawal , 1981 .

[28]  Kent S. Udell,et al.  Heat transfer in porous media considering phase change and capillarity—the heat pipe effect , 1985 .

[29]  Brian Straughan,et al.  Convection in Porous Media , 2008 .

[30]  V. Ganesan,et al.  Corrosion of annealed AISI 316 stainless steel in sodium environment , 1998 .

[31]  Jianqiang Shan,et al.  Reliability and loading-following studies of a heat pipe cooled, AMTEC conversion space reactor power system , 2019, Annals of Nuclear Energy.

[32]  M. Lodhi,et al.  Design and material variation for an improved power output of AMTEC cells , 2001 .

[33]  R. P. Mayer,et al.  Mercury Porosimetry: Filling of Toroidal Void Volume Following Breakthrough between Packed Spheres , 1966 .

[34]  Barry N. Taylor,et al.  Guidelines for Evaluating and Expressing the Uncertainty of Nist Measurement Results , 2017 .

[35]  Dmitry V. Paramonov,et al.  Novel, Integrated Reactor/Power Conversion System (LMR-AMTEC) , 2001 .

[36]  C. P. Bankston,et al.  Kinetics and transport at AMTEC electrodes. I - The interfacial impedance model. [alkali metal thermoelectric converters] , 1990 .

[37]  D. G. Huizenga,et al.  Knudesen diffusion in random assemblages of uniform spheres , 1986 .

[38]  Alfred Schock,et al.  Coupled thermal, electrical, and fluid flow analyses of AMTEC converters, with illustrative application to OSC's cell design , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[39]  Helena L. Chum,et al.  Review of thermally regenerative electrochemical systems , 1981 .

[40]  Xiaochen Lu,et al.  Analysis of the performance of an alkali metal thermoelectric converter (AMTEC) based on a lumped thermal-electrochemical model , 2018 .

[41]  A. Onea,et al.  AMTEC clusters for power generation in a concentrated solar power plant. , 2015 .

[42]  M.A.K. Lodhi,et al.  Optimization of the TIEC/AMTEC cascade cell for high efficiency , 2006 .

[43]  A. Bejan Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes , 1995 .

[44]  M.A.K. Lodhi,et al.  Simulation and analysis of time-dependent degradation behavior of AMTEC , 2001 .

[45]  Neill Weber,et al.  A thermoelectric device based on beta-alumina solid electrolyte , 1974 .

[46]  A. Hollenkamp,et al.  Emerging electrochemical energy conversion and storage technologies , 2014, Front. Chem..

[47]  Mohamed S. El-Genk,et al.  Radiation/conduction model for multitube AMTEC cells , 2008 .

[48]  M. H. Kamdar,et al.  Embrittlement by liquid metals , 1973 .

[49]  Mohamed S. El-Genk,et al.  Performance analysis of Pluto/Express, multitube AMTEC cells , 1999 .

[50]  N. Wakao,et al.  Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds , 1978 .

[51]  M. Makansi,et al.  Determination of the Vapor Pressure of Sodium , 1955 .

[52]  R. Ewell,et al.  Experimental and Systems Studies of the Alkali Metal Thermoelectric Converter for Aerospace Power , 1983 .

[53]  W. G. Pollard,et al.  On Gaseous Self-Diffusion in Long Capillary Tubes , 1948 .

[54]  L. Pisani Simple Expression for the Tortuosity of Porous Media , 2011 .

[55]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[56]  Louis Gosselin,et al.  Heat transfer in upper part of electrolytic cells: Thermal circuit and sensitivity analysis , 2013 .

[57]  Zhangxin Chen,et al.  Critical review of the impact of tortuosity on diffusion , 2007 .

[58]  A. Majumdar Thermoelectricity in Semiconductor Nanostructures , 2004, Science.

[59]  Jan E. Pantolin,et al.  Operation of Low Temperature AMTEC Cells , 1992 .

[60]  Michael G. Izenson,et al.  Condensation of sodium on a micromachined surface for AMTEC , 1993 .

[61]  D. Gautam Characterization of the conduction properties of alkali metal ion conducting solid electrolytes using thermoelectric measurements , 2006 .

[62]  M. Rodríguez-Valverde,et al.  Derivation of Jurin's law revisited , 2010 .

[63]  Evelyn N. Wang,et al.  Electrically induced drop detachment and ejection , 2016 .

[64]  A. Fedorov,et al.  Thermal modeling and efficiency of a dual-stage sodium heat engine , 2018, Applied Thermal Engineering.

[65]  T. Kumada,et al.  Diffusion Coefficients of Sodium Vapors in Argon and Helium , 1979 .

[66]  J. Cuevas,et al.  Radiative Heat Transfer , 2018, ACS Photonics.

[67]  W. D. Manly,et al.  Corrosion Resistance of Metals and Alloys to Sodium and Lithium , 1957 .

[68]  M.A.K. Lodhi,et al.  Effect of geometrical variations on AMTEC cell heat losses , 2000 .

[69]  Hans Rumpf,et al.  Einflüsse der Porosität und Korngrößenverteilung im Widerstandsgesetz der Porenströmung , 1971 .

[70]  M.S. El-Genk,et al.  Vacuum testing of high efficiency multi-base tube AMTEC cells , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[71]  D. Nield Resolution of a Paradox Involving Viscous Dissipation and Nonlinear Drag in a Porous Medium , 2000 .

[72]  Minggao Ouyang,et al.  A model predicting performance of proton exchange membrane fuel cell stack thermal systems , 2004 .

[73]  V. Carey Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Third Edition , 2020 .

[74]  Terry J. Hendricks,et al.  High-Performance Radial AMTEC Cell Design for Ultra-High-Power Solar AMTEC Systems , 2000 .

[75]  Shuang-Ying Wu,et al.  Phase change heat transfer characteristics of porous wick evaporator with bayonet tube and alkali metal as working fluid , 2018 .

[76]  Mohamed S. El-Genk,et al.  Capillary Limit of Evaporator Wick in Alkali Metal Thermal-to-Electric Converters , 2002 .

[77]  A. Onea,et al.  Design and construction of the ATEFA facility for experimental investigations of AMTEC test modules , 2017 .

[78]  Ioannis Chatzis,et al.  A New Technique to Measure the Breakthrough Capillary Pressure , 2005 .

[79]  Clay Mayberry,et al.  Experimental investigation of multi-AMTEC cell ground demonstration converter systems based on PX-3 and PX-5 series AMTEC cells , 2008 .

[80]  Margaret A. K. Ryan,et al.  Reversible Thermodynamic Cycle for AMTEC Power Conversion , 1992 .

[81]  Shannon K. Yee,et al.  $ per W metrics for thermoelectric power generation: beyond ZT , 2013 .

[82]  C. A. Borkowski,et al.  Parasitic heat loss reduction in AMTEC cells by heat shield optimization , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[83]  Yayuan Liu,et al.  Fundamental study on the wetting property of liquid lithium , 2018, Energy Storage Materials.

[84]  Robert K. Sievers,et al.  500 Watt Solar AMTEC Power System for Small Spacecraft. , 1995 .

[85]  Peter Kuster,et al.  Principles Of Heat Transfer In Porous Media , 2016 .

[86]  R. P. Mayer,et al.  Mercury porosimetry—breakthrough pressure for penetration between packed spheres , 1965 .

[87]  Duncan A. MacInnes,et al.  The principlēs of electrochemistry , 1944 .

[88]  Amir Fartaj,et al.  A pseudo 3D electrochemical-thermal modeling and analysis of a lithium-ion battery for electric vehicle thermal management applications , 2017 .

[89]  I. Mutoh,et al.  Sodium corrosion behavior of austenitic alloys and selective dissolution of chromium and nickel , 1986 .

[90]  Mohamed S. El-Genk,et al.  “SAIRS” — Scalable Amtec Integrated Reactor space power System , 2004 .

[91]  Paul R. Shearing,et al.  On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems , 2016 .

[92]  Alexander Schwartz,et al.  Fundamentals Of Engineering Thermodynamics , 2016 .

[93]  Mohamed S. El-Genk,et al.  Sodium vapor pressure losses in a multitube, alkali-metal thermal-to-electric converter , 1999 .

[94]  E. Wachsman,et al.  Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.

[95]  S. M. Ghiaasiaan TWO-PHASE FLOW, BOILING AND CONDENSATION IN CONVENTIONAL AND MINIATURE SYSTEMS , 2007 .

[96]  J. Higdon,et al.  Permeability of three-dimensional models of fibrous porous media , 1996, Journal of Fluid Mechanics.

[97]  Robert K. Sievers,et al.  AMTEC/SHE for space nuclear power applications , 2008 .

[98]  K. Tsuchida,et al.  Ceramic electrodes for an alkali metal thermo-electric converter (AMTEC) , 1993 .

[99]  H. Khalkhali,et al.  Entropy Generation in Heat Pipe System , 1996, Thermal Science of Advanced Steam Generators/Heat Exchangers.

[100]  P. Cheng,et al.  Thermal dispersion in a porous medium , 1990 .

[101]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[102]  Robert K. Sievers,et al.  AMTEC radioisotope power system design and analysis for Pluto Express Fly-By , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[103]  J. Fergus Ion transport in sodium ion conducting solid electrolytes , 2012 .

[104]  Marten G. Barker,et al.  THe corrosion of chromium, iron, and stainless steel in liquid sodium , 1974 .

[105]  Optimization of liquid-return artery in a vapor-anode, multitube AMTEC , 2008 .

[106]  J. Tournier,et al.  An electric model of a vapour anode, multitube alkali–metal thermal-to-electric converter , 1999 .

[107]  S. Rhi,et al.  Study on the Characteristics of an Alkali-Metal Thermoelectric Power Generation System , 2015, Journal of Electronic Materials.

[108]  James L. Beck,et al.  Convection in a box of porous material saturated with fluid , 1972 .

[109]  E. L. Dunning THE THERMODYNAMIC AND TRANSPORT PROPERTIES OF SODIUM AND SODIUM VAPOR , 1960 .

[110]  G. Turner LIQUID METAL FLOW MEASUREMENT (SODIUM) STATE-OF-THE-ART STUDY. , 1968 .

[111]  Evelyn N Wang,et al.  Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. , 2012, Nano letters.

[112]  Mohamed S. El-Genk,et al.  A thermal model of the conical evaporator in Pluto/Express, multi-tube AMTEC cells , 2008 .

[113]  M. Vanderhaegen,et al.  A Review on Sodium Boiling Phenomena in Reactor Systems , 2014 .

[114]  L. Leibowitz,et al.  Thermodynamic and transport properties of sodium liquid and vapor , 1995 .

[115]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[116]  Entropy minimization in micro-scale evaporating thin liquid film in capillary tubes , 2008 .

[117]  J. Tournier,et al.  AMTEC Performance and Evaluation Analysis Model (APEAM): Comparison with test results of PX-4C, PX-5A, and PX-3A cells , 2008 .

[118]  John R. Howell,et al.  A catalog of radiation configuration factors , 1982 .

[119]  G. Vignoles Modelling binary, Knudsen and transition regime diffusion inside complex porous media , 1995 .

[120]  C. B. Vining An inconvenient truth about thermoelectrics. , 2009, Nature materials.

[121]  Lan Xiao,et al.  A review on advances in alkali metal thermal to electric converters (AMTECs) , 2009 .

[123]  J. Kennedy,et al.  The β-aluminas , 1977 .

[124]  Joeri Van Mierlo,et al.  Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation , 2017 .

[125]  E. H. Kennard Kinetic theory of gases, with an introduction to statistical mechanics , 1938 .

[126]  S. Kim,et al.  Effects of the Darcy number, the Prandtl number, and the Reynolds number on local thermal non-equilibrium , 2002 .

[127]  Edward A. Mason,et al.  Thermal Conductivity of Multicomponent Gas Mixtures. II , 1958 .

[128]  Michael Schuller,et al.  Vacuum testing of high efficiency multi-base tube AMTEC cells: February 1997–October 1997 , 2008 .

[129]  M. Khayet Membranes and theoretical modeling of membrane distillation: a review. , 2011, Advances in colloid and interface science.

[130]  Lan Xiao,et al.  A parabolic dish/AMTEC solar thermal power system and its performance evaluation , 2010 .

[131]  Massoud Kaviany,et al.  Propagation of condensation front in steam injection into dry porous media , 1995 .

[132]  Shuang-Ying Wu,et al.  A new AMTEC/TAR hybrid system for power and cooling cogeneration , 2019, Energy Conversion and Management.

[133]  Mohamed S. El-Genk,et al.  Radiation heat transfer in multitube, alkali-metal thermal-to-electric converter , 1999 .

[134]  T. Cole,et al.  Thermoelectric Energy Conversion with Solid Electrolytes , 1983, Science.

[135]  R. Cerbino Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2006 .

[136]  S. Patankar,et al.  Mathematical modeling of heat transfer, condensation, and capillary flow in porous insulation on a cold pipe , 2004 .

[137]  Mohamed S. El-Genk,et al.  AMTEC/TE static converters for high energy utilization, small nuclear power plants , 2004 .