CERES in higher-order logic

We define a generalization CERES ! of the first-order cut-elimination method CERES to higher-order logic. At the core of CERES ! lies the computation of an (unsatisfiable) set of sequents CS(�) (the characteristic sequent set) from a proof � of a sequent S. A refutation of CS(�) in a higher-order resolution calculus can be used to transform cut-free parts of � (the proof projections) into a cutfree proof of S. An example illustrates the method and shows that CERES ! can produce meaningful cut-free proofs in mathematics that traditional cutelimination methods cannot reach.

[1]  Christoph Benzmüller,et al.  Comparing Approaches To Resolution Based Higher-Order Theorem Proving , 2002, Synthese.

[2]  Alexander Leitsch,et al.  Cut-Elimination: Experiments with CERES , 2005, LPAR.

[3]  Alexander Leitsch,et al.  CERES in Many-Valued Logics , 2004, LPAR.

[4]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[5]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[6]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[7]  G. Gentzen Untersuchungen über das logische Schließen. II , 1935 .

[8]  Alexander Leitsch,et al.  A Clausal Approach to Proof Analysis in Second-Order Logic , 2009, LFCS.

[9]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[10]  Reinhard Muskens Intensional Models for the Theory of Types , 2007, J. Symb. Log..

[11]  Christian G. Fermüller,et al.  Cut Elimination for First Order Gödel Logic by Hyperclause Resolution , 2008, LPAR.

[12]  Alexander Leitsch,et al.  On Skolemization and Proof Complexity , 1994, Fundam. Informaticae.

[13]  G. A. Miller,et al.  MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.

[14]  Alexander Leitsch,et al.  Herbrand Sequent Extraction , 2008, AISC/MKM/Calculemus.

[15]  George Polya,et al.  Induction and Analogy in Mathematics , 1954 .

[16]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[17]  Alexander Leitsch,et al.  Cut-elimination and Redundancy-elimination by Resolution , 2000, J. Symb. Comput..

[18]  G. Pólya,et al.  Mathematics and Plausible Reasoning: Vol. I: Induction and Analogy in Mathematics , 1979 .

[19]  Christoph Benzmüller,et al.  Higher-order semantics and extensionality , 2004, Journal of Symbolic Logic.

[20]  J. Girard Proof Theory and Logical Complexity , 1989 .

[21]  Dale A. Miller,et al.  A compact representation of proofs , 1987, Stud Logica.

[22]  Alexander Leitsch,et al.  CERES: An analysis of Fürstenberg's proof of the infinity of primes , 2008, Theoretical Computer Science.

[23]  G. Pólya Mathematics and Plausible Reasoning , 1958 .

[24]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .