A Radio Source Coincident with the Superluminous Supernova PTF10hgi: Evidence for a Central Engine and an Analog of the Repeating FRB 121102?

We present the detection of an unresolved radio source coincident with the position of the Type I superluminous supernova (SLSN) PTF10hgi (z = 0.098) about 7.5 yr post-explosion, with a flux density of Fν(6 GHz) ≈ 47.3 μJy and a luminosity of Lν(6 GHz) ≈ 1.1 × 1028 erg s−1 Hz−1. This represents the first detection of radio emission coincident with an SLSN on any timescale. We investigate various scenarios for the origin of the radio emission: star formation activity, an active galactic nucleus, and a non-relativistic supernova blastwave. While any of these would be quite novel if confirmed, none appear likely when considered within the context of the other properties of the host galaxy, previous radio observations of SLSNe, and the general population of hydrogen-poor supernovae (SNe). Instead, the radio emission is reminiscent of the quiescent radio source associated with the repeating FRB 121102, which has been argued to be powered by a magnetar born in a SLSN or long gamma-ray burst explosion several decades ago. We show that the properties of the radio source are consistent with a magnetar wind nebula or an off-axis jet, indicating the presence of a central engine. Our directed search for fast radio bursts from the location of PTF10hgi using 40 minutes of Very Large Array phased-array data reveals no detections to a limit of 22 mJy (10σ; 10 ms duration). We outline several follow-up observations that can conclusively establish the origin of the radio emission.

[1]  C. Guidorzi,et al.  An Embedded X-Ray Source Shines through the Aspherical AT 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients , 2018, The Astrophysical Journal.

[2]  E. Berger,et al.  Nebular-phase Spectra of Superluminous Supernovae: Physical Insights from Observational and Statistical Properties , 2018, The Astrophysical Journal.

[3]  B. Elmegreen,et al.  Global correlations between the radio continuum, infrared, and CO emissions in dwarf galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  E. Berger,et al.  One Thousand Days of SN2015bn: HST Imaging Shows a Light Curve Flattening Consistent with Magnetar Predictions , 2018, The Astrophysical Journal.

[5]  E. Berger,et al.  Where is the Engine Hiding Its Missing Energy? Constraints from a Deep X-Ray Non-detection of the Superluminous SN 2015bn , 2018, The Astrophysical Journal.

[6]  B. Metzger,et al.  A Concordance Picture of FRB 121102 as a Flaring Magnetar Embedded in a Magnetized Ion–Electron Wind Nebula , 2018, The Astrophysical Journal.

[7]  Columbia,et al.  Discovery of the Luminous, Decades-long, Extragalactic Radio Transient FIRST J141918.9+394036 , 2018, The Astrophysical Journal.

[8]  E. Quataert,et al.  Jet Dynamics in Compact Object Mergers: GW170817 Likely Had a Successful Jet , 2018, The Astrophysical Journal.

[9]  E. Berger,et al.  Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  T. Morokuma,et al.  Obscured Star Formation in the Host Galaxies of Superluminous Supernovae , 2018, 1803.02185.

[11]  M. Sullivan,et al.  Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2018, 1802.07820.

[12]  M. Rupen,et al.  A Radio Continuum Study of Dwarf Galaxies: 6 cm Imaging of LITTLE THINGS , 2018, 1801.05348.

[13]  R. Lynch,et al.  An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102 , 2018, Nature.

[14]  E. Berger,et al.  Jets in Hydrogen-poor Superluminous Supernovae: Constraints from a Comprehensive Analysis of Radio Observations , 2017, 1711.03428.

[15]  E. Ofek,et al.  Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2017, The Astrophysical Journal.

[16]  B. Metzger,et al.  The GRB–SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures , 2017, 1705.01103.

[17]  E. Berger,et al.  Results from a Systematic Survey of X-Ray Emission from Hydrogen-poor Superluminous SNe , 2017, The Astrophysical Journal.

[18]  K. Murase,et al.  Radio emission from embryonic superluminous supernova remnants , 2017, 1704.00456.

[19]  D. Malesani,et al.  Cosmic evolution and metal aversion in superluminous supernova host galaxies , 2016, 1612.05978.

[20]  N. Tanvir,et al.  A Reverse Shock and Unusual Radio Properties in GRB 160625B , 2017, 1705.08455.

[21]  H. J. van Langevelde,et al.  FRB 121102 Is Coincident with a Star-forming Region in Its Host Galaxy , 2017, 1705.07698.

[22]  D. Frail,et al.  The VLA-COSMOS 3 GHz Large Project: Continuum data and source catalog release , 2017, 1703.09713.

[23]  K. Murase,et al.  Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102 , 2017, 1701.04815.

[24]  E. Berger,et al.  Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts , 2017, 1701.02370.

[25]  A. Keimpema,et al.  A direct localization of a fast radio burst and its host , 2017, Nature.

[26]  T. Joseph W. Lazio,et al.  The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102 , 2017, 1701.01100.

[27]  H. J. van Langevelde,et al.  The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales , 2017, 1701.01099.

[28]  Z. Paragi,et al.  Discovery of five low-luminosity active galactic nuclei at the centre of the Perseus cluster , 2016, 1611.05986.

[29]  E. Pellegrini,et al.  The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies , 2016, 1611.01705.

[30]  Benjamin D. Johnson,et al.  Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe , 2016, 1609.09073.

[31]  Wei Zheng,et al.  A REVERSE SHOCK IN GRB 160509A , 2016, 1606.08873.

[32]  J. Graham,et al.  Probing dust-obscured star formation in the most massive Gamma-Ray Burst host galaxies , 2016, 1606.08285.

[33]  P. Vreeswijk,et al.  HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY , 2016, 1604.08207.

[34]  Anthony L. Piro,et al.  THE IMPACT OF A SUPERNOVA REMNANT ON FAST RADIO BURSTS , 2016, 1604.04909.

[35]  P. Mészáros,et al.  A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants , 2016, 1603.08875.

[36]  Nrl,et al.  A repeating fast radio burst , 2016, Nature.

[37]  D. A. Kann,et al.  A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst , 2015, Nature.

[38]  D. Perley,et al.  ENERGY INJECTION IN GAMMA-RAY BURST AFTERGLOWS , 2015, 1504.03702.

[39]  Liang Li,et al.  HOW BAD OR GOOD ARE THE EXTERNAL FORWARD SHOCK AFTERGLOW MODELS OF GAMMA-RAY BURSTS? , 2015, 1503.03193.

[40]  D. Malesani,et al.  Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.

[41]  P. Jakobsson,et al.  CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < z < 2.5 , 2014, 1407.4456.

[42]  J. Condon,et al.  A CANDIDATE MASSIVE BLACK HOLE IN THE LOW-METALLICITY DWARF GALAXY PAIR MRK 709 , 2014, 1405.0278.

[43]  X. Siemens,et al.  UvA-DARE ( Digital Academic Repository ) Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey , 2014 .

[44]  W. Deng,et al.  COSMOLOGICAL IMPLICATIONS OF FAST RADIO BURST/GAMMA-RAY BURST ASSOCIATIONS , 2013, 1401.0059.

[45]  B. Metzger,et al.  Constraints on long-lived remnants of neutron star binary mergers from late-time radio observations of short duration gamma-ray bursts , 2013, 1310.4506.

[46]  S. Smartt,et al.  HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.

[47]  J. Greene,et al.  DWARF GALAXIES WITH OPTICAL SIGNATURES OF ACTIVE MASSIVE BLACK HOLES , 2013, 1308.0328.

[48]  L. Piro,et al.  THE ULTRA-LONG GRB 111209A. II. PROMPT TO AFTERGLOW AND AFTERGLOW PROPERTIES , 2013, 1306.1699.

[49]  D. Perley,et al.  RADIO CONSTRAINTS ON HEAVILY OBSCURED STAR FORMATION WITHIN DARK GAMMA-RAY BURST HOST GALAXIES , 2013, 1305.2941.

[50]  R. Margutti,et al.  A REVERSE SHOCK IN GRB 130427A , 2013, 1305.2453.

[51]  A. Pastorello,et al.  SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.

[52]  J. Chengalur,et al.  The radio - far infrared correlation in the faintest star forming dwarf galaxies , 2012, 1204.3305.

[53]  A. J. van der Horst,et al.  GAMMA-RAY BURST AFTERGLOW BROADBAND FITTING BASED DIRECTLY ON HYDRODYNAMICS SIMULATIONS , 2011, 1110.5089.

[54]  E. Mazets,et al.  PANCHROMATIC OBSERVATIONS OF SN 2011dh POINT TO A COMPACT PROGENITOR STAR , 2011, 1107.1876.

[55]  D. Calzetti,et al.  CALIBRATING EXTINCTION-FREE STAR FORMATION RATE DIAGNOSTICS WITH 33 GHz FREE–FREE EMISSION IN NGC 6946 , 2011, 1105.4877.

[56]  C. Brogan,et al.  Low-mass black holes as the remnants of primordial black hole formation , 2012, Nature Communications.

[57]  M. J. Page,et al.  ON THE ELECTRON ENERGY DISTRIBUTION INDEX OF SWIFT GAMMA-RAY BURST AFTERGLOWS , 2009, 0908.0891.

[58]  M. M. Kasliwal,et al.  THE COLLIMATION AND ENERGETICS OF THE BRIGHTEST SWIFT GAMMA-RAY BURSTS , 2009, 0905.0690.

[59]  Tim J. Cornwell,et al.  The Noncoplanar Baselines Effect in Radio Interferometry: The W-Projection Algorithm , 2008, IEEE Journal of Selected Topics in Signal Processing.

[60]  Fiona A. Harrison,et al.  A Comprehensive Study of GRB 070125, A Most Energetic Gamma-Ray Burst , 2008, 0802.2748.

[61]  S. Klein Astronomy and astrophysics with , 2008 .

[62]  M. Mclaughlin,et al.  A Bright Millisecond Radio Burst of Extragalactic Origin , 2007, Science.

[63]  E. Sadler,et al.  Radio sources in the 6dFGS: local luminosity functions at 1.4 GHz for star-forming galaxies and radio-loud AGN , 2006, astro-ph/0612018.

[64]  D. Frail,et al.  The Radio and X-Ray-Luminous Type Ibc Supernova 2003L , 2004, astro-ph/0410163.

[65]  Zhi-Yun Li,et al.  The Diversity of Gamma-Ray Burst Afterglows and the Surroundings of Massive Stars , 2003, astro-ph/0311326.

[66]  D. Frail,et al.  A common origin for cosmic explosions inferred from calorimetry of GRB030329 , 2003, Nature.

[67]  F. A. Harrison,et al.  A Study of the Afterglows of Four GRBs: Constraining the Explosion and Fireball Model , 2003, astro-ph/0307056.

[68]  T. D. Matteo,et al.  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[69]  J. Cordes,et al.  Searches for Fast Radio Transients , 2003, astro-ph/0304364.

[70]  E. Berger,et al.  The Radio Evolution of the Ordinary Type Ic Supernova SN 2002ap , 2002, astro-ph/0206183.

[71]  A. Panaitescu,et al.  Properties of Relativistic Jets in Gamma-Ray Burst Afterglows , 2001, astro-ph/0109124.

[72]  D. Frail,et al.  GRB 000418: A Hidden Jet Revealed , 2001, astro-ph/0102278.

[73]  Tsvi Piran,et al.  Jets in Gamma-Ray Bursts , 1999 .

[74]  R. Chevalier Synchrotron Self-Absorption in Radio Supernovae , 1998 .

[75]  J. Rhoads How to Tell a Jet from a Balloon: A Proposed Test for Beaming in Gamma-Ray Bursts , 1997, astro-ph/9705163.

[76]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .