Quantum receiver for large alphabet communication

Quantum mechanics allows measurements that surpass the fundamental sensitivity limits of classical methods. To benefit from the quantum advantage in a practical setting, the receiver should use communication channels resources optimally; this can be done employing large communication alphabets. Here we show the fundamental sensitivity potential of a quantum receiver for coherent communication with frequency shift keying. We introduce an adaptive quantum protocol for this receiver, show that its sensitivity outperforms other receivers for alphabet sizes above 4 and scales favorably, whereas quantum receivers explored to date suffer from degraded sensitivity with the alphabet size. In addition, we show that the quantum measurement advantage allows the much better use of the frequency space in comparison to classical frequency keying protocols and orthogonal frequency division multiplexing.

[1]  Polina Bayvel,et al.  Increasing the information rates of optical communications via coded modulation: a study of transceiver performance , 2016, Scientific reports.

[2]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[3]  H. Rabitz,et al.  Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra , 2016, Scientific Reports.

[4]  Sheldon M. Ross,et al.  Introduction to probability models , 1975 .

[5]  Tetsuya Kawanishi,et al.  High-speed optical DQPSK and FSK modulation using integrated Mach-Zehnder interferometers. , 2006, Optics express.

[6]  Georges Kaddoum,et al.  Optical Communication in Space: Challenges and Mitigation Techniques , 2017, IEEE Communications Surveys & Tutorials.

[7]  Julius Goldhar,et al.  Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination , 2013, Nature Photonics.

[8]  S. Shambayati,et al.  Deep-space optical communications , 2011, 2011 International Conference on Space Optical Systems and Applications (ICSOS).

[9]  Jing He,et al.  FFT-Size Efficient 4096-QAM OFDM for Low-Cost DML-Based IMDD System , 2016, IEEE Photonics Journal.

[10]  Masataka Nakazawa,et al.  1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km. , 2012, Optics express.

[11]  V. P. Belavkin,et al.  Optimum distinction of non-orthogonal quantum signals , 1975 .

[12]  Christoph Marquardt,et al.  A robust quantum receiver for phase shift keyed signals , 2014, 1412.6242.

[13]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[14]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[15]  Ke Li,et al.  16-QAM Quantum Receiver with Hybrid Structure Outperforming the Standard Quantum Limit , 2014 .

[16]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2012, Nature Photonics.

[17]  W. L. Cowley The Uncertainty Principle , 1949, Nature.

[18]  A. S. Holevo,et al.  Capacity of a quantum communication channel , 1979 .

[19]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[20]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[21]  Saikat Guha,et al.  Approaching Helstrom limits to optical pulse-position demodulation using single photon detection and optical feedback , 2011 .

[22]  Carlton M. Caves,et al.  Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer , 1980 .

[23]  Masahide Sasaki,et al.  Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor. , 2010, Optics express.

[24]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[25]  F. E. Becerra,et al.  Photon number resolution enables quantum receiver for realistic coherent optical communications , 2014, Nature Photonics.

[26]  Julius Goldhar,et al.  M-ary-state phase-shift-keying discrimination below the homodyne limit , 2011 .

[27]  S. Reynaud,et al.  Quantum Limits in Interferometric Measurements , 1990, quant-ph/0101104.

[28]  S. Cherry,et al.  Edholm's law of bandwidth , 2004, IEEE Spectrum.

[29]  A. Mecozzi,et al.  Kramers–Kronig coherent receiver , 2016 .

[30]  K. Kikuchi,et al.  Evaluation of Sensitivity of the Digital Coherent Receiver , 2008, Journal of Lightwave Technology.

[31]  S. Massar,et al.  Quantum information processing and communication , 2005 .

[32]  Samuel L. Braunstein,et al.  Dense coding for continuous variables , 1999, quant-ph/9910010.

[33]  Seb J. Savory,et al.  Transceiver-limited high spectral efficiency Nyquist-WDM systems , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[34]  Masahide Sasaki,et al.  Quantum receiver beyond the standard quantum limit of coherent optical communication. , 2011, Physical review letters.

[35]  Masahide Sasaki,et al.  Quantum detection and mutual information for QAM and PSK signals , 1999, IEEE Trans. Commun..

[36]  Peter J. Winzer,et al.  Roadmap on Optical Communications , 2016 .

[37]  Polina Bayvel,et al.  Reach enhancement of 100% for a DP-64QAM super-channel using MC-DBP , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[38]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.