Describing the Diverse Geometries of Gold from Nanoclusters to Bulk—A First-Principles-Based Hybrid Bond-Order Potential

Molecular dynamics simulations using empirical force fields (EFFs) are crucial for gaining fundamental insights into atomic structure and long time scale dynamics of Au nanoclusters with far-reaching applications in energy and devices. This approach is thwarted by the failure of currently available EFFs in describing the size-dependent dimensionality and diverse geometries exhibited by Au clusters (e.g., planar structures, hollow cages, tubes, pyramids, space-filled structures). Here, we mitigate this issue by introducing a new hybrid bond-order potential (HyBOP), which accounts for (a) short-range interactions via Tersoff-type BOP terms that accurately treat bond directionality and (b) long-range dispersion effects by a scaled Lennard–Jones term whose contribution depends on the local atomic density. We optimized the independent parameters for our HyBOP using a global optimization scheme driven by genetic algorithms. Moreover, to ensure good transferability of these parameters across different length sca...

[1]  An improved interatomic potential for xenon in UO2: a combined density functional theory/genetic algorithm approach. , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  S. Lecoultre,et al.  UV-visible absorption of small gold clusters in neon: Au(n) (n = 1-5 and 7-9). , 2011, The Journal of chemical physics.

[3]  J. Jellinek,et al.  Structural and dynamical properties of transition metal clusters , 1991 .

[4]  W. Andreoni,et al.  Gold and platinum microclusters and their anions: comparison of structural and electronic properties , 2000 .

[5]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[6]  Uzi Landman,et al.  Structural evolution of Au nanoclusters: From planar to cage to tubular motifs , 2006 .

[7]  Lichang Wang,et al.  Molecular dynamics studies of the coalescence of silver clusters , 2007 .

[8]  Charles T. Campbell,et al.  The Active Site in Nanoparticle Gold Catalysis , 2004, Science.

[9]  Karo Michaelian,et al.  Structure and energetics of Ni, Ag, and Au nanoclusters , 1999 .

[10]  Stefan Goedecker,et al.  Structure of large gold clusters obtained by global optimization using the minima hopping method , 2009 .

[11]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[12]  W. Goddard,et al.  General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide. , 2014, Journal of chemical theory and computation.

[13]  Hannu Häkkinen,et al.  Bonding in Cu, Ag, and Au clusters: relativistic effects, trends, and surprises. , 2002, Physical review letters.

[14]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[15]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[16]  Britta Redlich,et al.  Structures of Neutral Au7, Au19, and Au20 Clusters in the Gas Phase , 2008, Science.

[17]  Manolis Stratakis,et al.  Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. , 2012, Chemical reviews.

[18]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[19]  A. Corma,et al.  Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature , 2012, Science.

[20]  R. Müller,et al.  Analytic bond-order potential for atomistic simulations of zinc oxide , 2006 .

[21]  W Michael Brown,et al.  Efficient hybrid evolutionary optimization of interatomic potential models. , 2010, The Journal of chemical physics.

[22]  Youcheng Li,et al.  Au42: a possible ground-state noble metallic nanotube. , 2008, The Journal of chemical physics.

[23]  J. Soler,et al.  Trends in the structure and bonding of noble metal clusters , 2004 .

[24]  Patrick Weis,et al.  Structures of small gold cluster cations (Aun+, n<14): Ion mobility measurements versus density functional calculations , 2002 .

[25]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[26]  Adri C. T. van Duin,et al.  Reactive forcefield for simulating gold surfaces and nanoparticles , 2010 .

[27]  M. Dion,et al.  Erratum: Van der Waals Density Functional for General Geometries [Phys. Rev. Lett. 92, 246401 (2004)] , 2005 .

[28]  Hannu Häkkinen,et al.  Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO , 2005, Science.

[29]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[30]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[31]  P. Erhart,et al.  Interatomic potentials for the Be–C–H system , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[33]  N. Papanicolaou,et al.  Tight-binding interatomic potentials based on total-energy calculation: Application to noble metals using molecular-dynamics simulation , 1997 .

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  J. A. Alonso,et al.  Chemical Properties of Small Au Clusters: An Analysis of the Local Site Reactivity , 2007 .

[36]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[37]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[38]  M. Baskes,et al.  Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method , 2003 .

[39]  A. Sutton,et al.  Long-range Finnis–Sinclair potentials , 1990 .

[40]  Li Xiao,et al.  Structural study of gold clusters. , 2006, The Journal of chemical physics.

[41]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[42]  R. Dickson,et al.  Highly fluorescent, water-soluble, size-tunable gold quantum dots. , 2004, Physical review letters.

[43]  R. Dickson,et al.  High quantum yield blue emission from water-soluble Au8 nanodots. , 2003, Journal of the American Chemical Society.

[44]  Kai Nordlund,et al.  Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system , 2005 .

[45]  Jonathan Doye,et al.  Global minima for transition metal clusters described by Sutton–Chen potentials , 1997 .

[46]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[47]  Li Xiao,et al.  From planar to three-dimensional structural transition in gold clusters and the spin–orbit coupling effect , 2004 .

[48]  Jinlan Wang,et al.  Structural, Electronic, and Optical Properties of Noble Metal Clusters from First Principles , 2006 .

[49]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[50]  Hannu Häkkinen,et al.  On the Electronic and Atomic Structures of Small AuN- (N = 4−14) Clusters: A Photoelectron Spectroscopy and Density-Functional Study , 2003 .

[51]  Jinlan Wang,et al.  Hollow cages versus space-filling structures for medium-sized gold clusters: the spherical aromaticity of the Au50 cage. , 2005, The journal of physical chemistry. A.

[52]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[53]  Masatake Haruta,et al.  Nanoparticulate Gold Catalysts for Low-Temperature CO Oxidation , 2004 .

[54]  A. V. van Duin,et al.  Development of a ReaxFF description for gold , 2008 .

[55]  Marie Backman,et al.  Bond order potential for gold , 2012 .

[56]  D. Sánchez-Portal,et al.  Lowest Energy Structures of Gold Nanoclusters , 1998 .

[57]  Xiao Cheng Zeng,et al.  Evidence of hollow golden cages. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[59]  Stefano Artin Serapian,et al.  The shape of Au8: gold leaf or gold nugget? , 2013, Nanoscale.

[60]  Roy L. Johnston,et al.  Modelling gold clusters with an empirical many-body potential , 2000 .

[61]  Posada-Amarillas,et al.  Structural and vibrational analysis of amorphous Au55 clusters. , 1996, Physical review. B, Condensed matter.

[62]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[63]  Brenner Relationship between the embedded-atom method and Tersoff potentials. , 1989, Physical review letters.

[64]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .