Properties and electrochemical performance of La0.75Sr0.25Cr0.5Mn0.5O3−δ–La0.2Ce0.8O2−δ composite anodes for solid oxide fuel cells

[1]  S. Acharya,et al.  Photoluminescence properties of sesquioxide doped ceria synthesized by modified sol-gel route , 2011 .

[2]  Nigel P. Brandon,et al.  Sulfur Tolerance and Hydrocarbon Stability of La0.75Sr0.25Cr0.5Mn0.5O3 ∕ Gd0.2Ce0.8O1.9 Composite Anode under Anodic Polarization , 2007 .

[3]  S. Chan,et al.  High-performance (La,Sr ) (Cr,Mn )O3 / (Gd,Ce )O2- δ composite anode for direct oxidation of methane , 2007 .

[4]  J. Irvine,et al.  Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3 − δ , 2007 .

[5]  Juan Carlos Ruiz-Morales,et al.  Fuel cell studies of perovskite-type materials for IT-SOFC , 2006 .

[6]  J. Goodenough,et al.  La0.75Sr0.25Cr0.5Mn0.5O3−δ + Cu composite anode running on H2 and CH4 fuels , 2006 .

[7]  J. Kwok,et al.  GDC-Impregnated ( La0.75Sr0.25 ) ( Cr0.5Mn0.5 ) O3 Anodes for Direct Utilization of Methane in Solid Oxide Fuel Cells , 2006 .

[8]  Masashi Mori,et al.  Sintering characteristics, electrical conductivity and thermal properties of La-doped ceria powders , 2006 .

[9]  S. Chan,et al.  (La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells , 2006 .

[10]  J. Irvine,et al.  Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3-δat lanthanum gallate electrolytes , 2006 .

[11]  Suttichai Assabumrungrat,et al.  Catalytic dry reforming of methane over high surface area ceria , 2005 .

[12]  T. Horita,et al.  Electronic Conductivity of La-Doped Ceria Ceramics , 2005 .

[13]  John T. S. Irvine,et al.  An Efficient Solid Oxide Fuel Cell Based upon Single‐Phase Perovskites , 2005 .

[14]  Zhe Cheng,et al.  Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1−xMnxO3 under anodic conditions , 2005 .

[15]  Tao Sh.W.,et al.  Catalytic Properties of the Perovskite Oxide La0.75Sr0.25Cr0.5Fe0.5O3-δ in Relation to Its Potential as a Solid Oxide Fuel Cell Anode Material , 2004 .

[16]  Y. Xiong,et al.  Hole and Electron Conductivities of 20 mol % ­ REO 1.5 Doped CeO2 (RE = Yb, Y, Gd, Sm, Nd, La) , 2004 .

[17]  J. Irvine,et al.  Catalytic activity for steam methane reforming and physical characterisation of La1−xSrxCr1−yNiyO3−δ , 2004 .

[18]  J. Irvine,et al.  Synthesis and Characterization of ( La0.75Sr0.25 ) Cr0.5Mn0.5 O 3 − δ , a Redox-Stable, Efficient Perovskite Anode for SOFCs , 2004 .

[19]  J. Irvine,et al.  Discovery and characterization of novel oxide anodes for solid oxide fuel cells. , 2004, Chemical record.

[20]  J. Sfeir LaCrO3-based anodes: stability considerations , 2003 .

[21]  John T. S. Irvine,et al.  A redox-stable efficient anode for solid-oxide fuel cells , 2003, Nature materials.

[22]  J. Vohs,et al.  Role of Hydrocarbon Deposits in the Enhanced Performance of Direct-Oxidation SOFCs , 2003 .

[23]  M. Primet,et al.  Surface Properties and Physicochemical Characterizations of a New Type of Anode Material, La1−xSrxCr1−yRuyO3−δ, for a Solid Oxide Fuel Cell under Methane at Intermediate Temperature , 2002 .

[24]  Zhiqiang Ji,et al.  A fuel-flexible ceramic-based anode for solid oxide fuel cells , 2002 .

[25]  Raymond J. Gorte,et al.  Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon , 2002 .

[26]  N. Xanthopoulos,et al.  Lanthanum Chromite Based Catalysts for Oxidation of Methane Directly on SOFC Anodes , 2001 .

[27]  John B. Goodenough,et al.  Increasing Power Density of LSGM-Based Solid Oxide Fuel Cells Using New Anode Materials , 2001 .

[28]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[29]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[30]  N. Minh Ceramic Fuel Cells , 1993 .

[31]  M. Hatano,et al.  Hydrogen from water by reduced cerium oxide , 1983 .

[32]  R. Kusy Influence of particle size ratio on the continuity of aggregates , 1977 .