Paleoproterozoic Mafic-Ultramafic Magmatism in the Northern Borborema Province, Northeast Brazil: Tectonic Setting and Potential for Deposits

Mafic-ultramafic intrusions form a 32-km-long NE-SW-trending array within Paleoproterozoic arc-related calc-alkaline plutonic rocks of the Rio Piranhas terrane in the Borborema Province, Northeast Brazil. The mafic-ultramafic intrusions consist of wehrlite, clinopyroxenite, and troctolite. They outcrop as small elongated bodies hosted by orthogneiss and migmatites associated with minor amphibolite and supracrustal rocks. Primary magmatic features predominate in the core of the intrusions, whereas metamorphic minerals and textures characterize their outer zones. The composition of cumulus olivine from different intrusions ranges from Fo80.6 to Fo67.6 (forsterite), indicating moderately primitive parental magmas. The compositional range of cumulus plagioclase coexisting with cumulus olivine in troctolites is characterized by high anorthite content (An79.9–An89.0). This feature, together with interstitial magmatic amphibole in troctolites, is characteristic of gabbroic intrusions in subduction-related magmatic arcs. U-Pb zircon ages indicate that mafic-ultramafic intrusions crystallized at ca. 2190 ± 5 Ma. U-Pb zircon ages of host orthogneiss indicate that they crystallized from calc-alkaline felsic magmas at ca. 2220–2223 Ma, thus providing only ∼30 My for the reported events of felsic and mafic plutonism. U-Pb zircon ages of host rocks include older ages (2.47 and 2.69 Ga) indicating that older crustal components are associated with the 2.23 Ga calc-alkaline magmatism. The presence of older crustal components is consistent with arc-related features, indicated by geochemical data and variable εNd(t) values in the mafic-ultramafic intrusions. The tholeiitic and calc-alkaline magmatism is correlated with the ca. 2.15–2.25 Ga magmatic arc reported in previous studies of the Rio Piranhas terrane. The mafic-ultramafic magmatism is interpreted as having originated in a magmatic arc, possibly resulting from partial melting of a mantle wedge above the subduction zone in late stages of the orogeny and suggests a new window of opportunity for exploration of Ni-Cu–platinum group element deposits.

[1]  Roberto Oliveira,et al.  Deep crustal framework of the Borborema Province, NE Brazil, derived from gravity and magnetic data , 2018, Precambrian Research.

[2]  Y. Dilek,et al.  Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites , 2017 .

[3]  A. Cruden,et al.  The mineral system approach applied to magmatic Ni-Cu-PGE sulphide deposits , 2016 .

[4]  E. Dantas,et al.  Floresta and Bodocó Mafic–Ultramafic Complexes, western Borborema Province, Brazil: Geochemical and isotope constraints for evolution of a Neoproterozoic arc environment and retro-eclogitic hosted Ti-mineralization , 2016 .

[5]  M. Santosh,et al.  U–Pb zircon geochronology and geochemistry of Paleoproterozoic magmatic suite from East Sarmatian Orogen: Tectonic implications on Columbia supercontinent , 2016 .

[6]  M. D. Giustina,et al.  Geology, petrology and geochronology of the Lago Grande layered complex: Evidence for a PGE-mineralized magmatic suite in the Carajás Mineral Province, Brazil , 2015 .

[7]  J. Mota-e-Silva,et al.  Platinum-group minerals in the Limoeiro Ni–Cu–(PGE) sulfide deposit, Brazil: the effect of magmatic and upper amphibolite to granulite metamorphic processes on PGM formation , 2015, Mineralium Deposita.

[8]  M. Hollanda,et al.  Detrital zircon ages and Nd isotope compositions of the Seridó and Lavras da Mangabeira basins (Borborema Province, NE Brazil): Evidence for exhumation and recycling associated with a major shift in sedimentary provenance , 2015 .

[9]  Ping Liu,et al.  Late Paleozoic mafic–ultramafic intrusions in southern Central Asian Orogenic Belt (NW China): Insight into magmatic Ni–Cu sulfide mineralization in orogenic setting , 2013 .

[10]  R. Armstrong,et al.  Long-lived Paleoproterozoic granitic magmatism in the Seridó-Jaguaribe domain, Borborema Province-NE Brazil , 2011 .

[11]  B. D. B. Neves The Paleoproterozoic in the South-American continent: Diversity in the geologic time , 2011 .

[12]  R. Arculus,et al.  The Longwood Igneous Complex, Southland, New Zealand: A Permo-Jurassic, intra-oceanic, subduction-related, I-type batholithic complex , 2011 .

[13]  Ping Liu,et al.  U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume , 2011 .

[14]  Bruno Alves de Jesus Rochas máficas e ultramáficas do complexo riacho da telha, Maçico São José do Campestre, província Borborema – NE do Brasil , 2011 .

[15]  M. Pimentel,et al.  Dating coeval mafic magmatism and ultrahigh temperature metamorphism in the Anápolis–Itauçu Complex, Central Brazil , 2011 .

[16]  E. Dantas,et al.  Geology, petrology and geochemistry of the “Americano do Brasil” layered intrusion, central Brazil, and its Ni–Cu sulfide deposits , 2011 .

[17]  M. Pimentel,et al.  Layered intrusions and volcanic sequences in Central Brazil: Geological and geochronological constraints for Mesoproterozoic (1.25 Ga) and Neoproterozoic (0.79 Ga) igneous associations , 2010 .

[18]  C. Yuan,et al.  Post-collisional plutons in the Balikun area, East Chinese Tianshan: Evolving magmatism in response to extension and slab break-off , 2010 .

[19]  F. Pirajno,et al.  Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia) , 2010 .

[20]  W. R. Schmus,et al.  The Cariris Velhos tectonic event in Northeast Brazil , 2010 .

[21]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[22]  S. Reddy,et al.  Palaeoproterozoic Supercontinents and Global Evolution , 2009 .

[23]  F. Pirajno,et al.  Intraplate magmatism in Central Asia and China and associated metallogeny , 2009 .

[24]  Xie‐Yan Song,et al.  Geochemistry of the Kalatongke Ni–Cu–(PGE) sulfide deposit, NW China: implications for the formation of magmatic sulfide mineralization in a postcollisional environment , 2009 .

[25]  F. Pirajno,et al.  Geochemistry of the Permian Kalatongke Mafic Intrusions, Northern Xinjiang, Northwest China: Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits , 2009 .

[26]  S. Reddy,et al.  Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere , 2009 .

[27]  S. Barnes,et al.  The composition of magmatic Ni–Cu–(PGE) sulfide deposits in the Tati and Selebi-Phikwe belts of eastern Botswana , 2008 .

[28]  J. Pearce Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust , 2008 .

[29]  W. R. van Schmus,et al.  Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt , 2008 .

[30]  H. Martin,et al.  Calc-Alkaline Magmatism at the Archean^Proterozoic Transition: the Caico¤ Complex Basement (NE Brazil) , 2007 .

[31]  S. Barnes,et al.  Formation of magmatic nickel-sulfide ore deposits and processses affecting their copper and platinum-group element contents , 2005 .

[32]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[33]  A. J. Naldrett Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration , 2004 .

[34]  F. Albarède,et al.  Precise and accurate isotopic measurements using multiple-collector ICPMS 1 1 Associate editor: Y. Amelin , 2004 .

[35]  A. Nutman,et al.  The 3.4–3.5 Ga São José do Campestre massif, NE Brazil: remnants of the oldest crust in South America , 2004 .

[36]  E. Dantas,et al.  The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana: insights from SHRIMP U–Pb detrital zircon ages and Sm–Nd crustal residence (TDM) ages , 2003 .

[37]  F. Corfu,et al.  Atlas of Zircon Textures , 2003 .

[38]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[39]  R. Pedersen,et al.  U–Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS techniques , 2002 .

[40]  F. Velasco,et al.  A new style of Ni-Cu mineralization related to magmatic breccia pipes in a transpressional magmatic arc, Aguablanca, Spain , 2001 .

[41]  Pimentel,et al.  The Sm-Nd isotopic method in the geochronology laboratory of the University of Brasília. , 2000, Anais da Academia Brasileira de Ciencias.

[42]  R. Cawthorn.,et al.  The Bushveld Complex , 1996 .

[43]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[44]  G. Droop,et al.  A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria , 1987, Mineralogical Magazine.

[45]  J. S. Beard Characteristic mineralogy of arc-related cumulate gabbros: Implications for the tectonic setting of gabbroic plutons and for andesite genesis , 1986 .

[46]  D. DePaolo A neodymium and strontium isotopic study of the Mesozoic calc‐alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California , 1981 .