Using occlusion models to evaluate scale-space processors

There are several systems that are claimed to generate scale-spaces but how do they compare? This paper examines four significant contenders using both synthetic and real models of occlusion in images. We find that anisotropic diffusion, while effective at removing noise, is not suitable for the estimation of position or scale of simple objects. Linear diffusion may be used for scale selection but has poor performance in occlusion and noise. Of the morphological scale-spaces that we discuss, we find that filtering with flat, connected set structuring elements is not only quicker to compute than diffusion-based scale-spaces, but the results are also perturbed less in the presence of common image distortions such as noise or occlusion.

[1]  Alexander Toet,et al.  Graph morphology , 1992, J. Vis. Commun. Image Represent..

[2]  Mohamed A. Deriche,et al.  Scale-Space Properties of the Multiscale Morphological Dilation-Erosion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[4]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  J. Andrew Bangham,et al.  Multiscale median and morphological filters for 2D pattern recognition , 1994, Signal Process..

[6]  Guillermo Sapiro,et al.  Robust Anisotropic Diffusion: Connections Between Robust Statistics, Line Processing, and Anisotropic Diffusion , 1997, Scale-Space.

[7]  Stephen J. Cox,et al.  A Comparison of Active Shape Model and Scale Decomposition Based Features for Visual Speech Recognition , 1998, ECCV.

[8]  Philippe Jean Salembier Clairon,et al.  Motion connected operators for image sequences , 1996 .

[9]  Arnold W. M. Smeulders,et al.  The Morphological Structure of Images: The Differential Equations of Morphological Scale-Space , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  J. A. Bangham,et al.  Multiscale median and morphological filters used for 2D pattern recognition , 1993 .

[11]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[12]  J. Andrew Bangham,et al.  Scale-Space Filters and Their Robustness , 1997, Scale-Space.

[13]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[14]  Lars Bretzner,et al.  On the Handling of Spatial and Temporal Scales in Feature Tracking , 1997, Scale-Space.

[15]  J. Andrew Bangham,et al.  Scale-Space From Nonlinear Filters , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  J. Andrew Bangham,et al.  Morphological scale-space preserving transforms in many dimensions , 1996, J. Electronic Imaging.