Hemodynamics in the leech: blood flow in two hearts switching between two constriction patterns

SUMMARY Two tubular, segmented hearts propel blood through the closed circulatory system of the medicinal leech and switch every 20–40 beats between two constriction patterns. We showed recently that within one heartbeat cycle, heart segments on one side constrict peristaltically rear-to-front (`peristaltic heart'), followed by nearly synchronous front-to-rear constrictions in the contralateral heart segments (`synchronous heart'). Using optical recordings from intact leeches, we now characterize the hemodynamic properties of the cardiac cycle of individual heart segments in different regions to ask whether the reversal of constrictions affects flow into, out of, and along the hearts. We measured total vessel capacity in corrosion casts and blood volume in individual heart segments of dissected leeches. We show that the peristaltic heart provides the propulsive force for forward and rearward flow and supplies the peripheral circulation through segmental efferent vessels. In comparison, the synchronous heart pumps less blood, most of which enters the segmental circulation. The heart sphincter, located in the posterior section of each heart segment, directs blood flow differently in the two modes. In the peristaltic heart, the sphincter prevents backflow and promotes longitudinal, forward flow while in the synchronous heart the sphincter restricts longitudinal, rearward flow and instead promotes flow into the segmental circulation. Blood is shunted via the contractile latero-dorsal arches from the dorsal intestinal vessel into the peristaltic heart in posterior segments 14 to 18. Switching between the two constriction patterns provides nutrient-rich blood to the vascular beds on both sides.

[1]  Ronald L Calabrese,et al.  Myomodulin increases Ih and inhibits the NA/K pump to modulate bursting in leech heart interneurons. , 2005, Journal of neurophysiology.

[2]  Ronald L Calabrese,et al.  Period differences between segmental oscillators produce intersegmental phase differences in the leech heartbeat timing network. , 2002, Journal of neurophysiology.

[3]  W. Burggren,et al.  Developmental changes in in vivo cardiac performance in the moth Manduca sexta. , 2000, The Journal of experimental biology.

[4]  H. Staudte,et al.  Studies on the fine structure of invertebrate blood vessels , 1976, Cell and Tissue Research.

[5]  Ronald L. Calabrese,et al.  The neural control of alternate heartbeat coordination states in the leech,Hirudo medicinalis , 2004, Journal of comparative physiology.

[6]  F. C. Howarth,et al.  Comparative Physiology , 2002, The Journal of physiology.

[7]  Thomas Krucker,et al.  Age-Dependent Cerebrovascular Abnormalities and Blood Flow Disturbances in APP23 Mice Modeling Alzheimer's Disease , 2003, The Journal of Neuroscience.

[8]  R. Calabrese,et al.  Heartbeat control in leeches. II. Fictive motor pattern. , 2004, Journal of neurophysiology.

[9]  M. Siddall,et al.  Diverse molecular data demonstrate that commercially available medicinal leeches are not Hirudo medicinalis , 2007, Proceedings of the Royal Society B: Biological Sciences.

[10]  R. Calabrese,et al.  Switching in the activity state of an interneuron that controls coordination of the hearts in the medicinal leech (Hirudo medicinalis). , 1994, The Journal of experimental biology.

[11]  Irene Boroffka,et al.  Topographie des kreislaufsystems und zirkulation bei Hirudo medicinalis (Annelida, Hirudinea) , 2004, Zeitschrift für Morphologie der Tiere.

[12]  Ronald L. Calabrese,et al.  Neural control of the hearts in the leech,Hirudo medicinalis , 2004, Journal of Comparative Physiology A.

[13]  Gunther S. Stent,et al.  Neuronal control of heartbeat in the medicinal leech , 2004, Journal of comparative physiology.

[14]  R. Calabrese,et al.  Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns. , 1995, Journal of neurobiology.

[15]  Thomas Krucker,et al.  New polyurethane‐based material for vascular corrosion casting with improved physical and imaging characteristics , 2006, Microscopy research and technique.

[16]  J. Hildebrand,et al.  Neuronal control of heart reversal in the hawkmoth Manduca sexta , 2001, Journal of Comparative Physiology A.

[17]  R L Davis Influence of oxygen on the heartbeat rhythm of the leech. , 1986, The Journal of experimental biology.

[18]  R. Calabrese,et al.  FMRF-amide-like substances in the leech. II. Bioactivity on the heartbeat system , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Ronald L Calabrese,et al.  Heartbeat control in leeches. I. Constriction pattern and neural modulation of blood pressure in intact animals. , 2004, Journal of neurophysiology.

[20]  Ronald L. Calabrese,et al.  Neural control of the hearts in the leech,Hirudo medicinalis , 1984, Journal of Comparative Physiology A.

[21]  P. Bushnell,et al.  Circulation in the Gippsland Giant Earthworm Megascolides australis , 1994, Physiological Zoology.

[22]  I. Zerbst-Boroffka,et al.  Recovery after anaerobic metabolism in the leech (Hirudo medicinalis L.) , 2004, Journal of Comparative Physiology B.

[23]  Ronald L. Calabrese,et al.  Rate modification in the heartbeat central pattern generator of the medicinal leech , 1984, Journal of Comparative Physiology A.

[24]  I. Zerbst-Boroffka,et al.  Blood Pressure in the Leech Hirudo Medicinalis , 1983 .

[25]  Jan-Peter Hildebrandt,et al.  Circulation in the Leech, Hirudo Medicinalis L , 1988 .

[26]  Ronald L. Calabrese,et al.  Leydig neuron activity modulates heartbeat in the medicinal leech , 1990, Journal of Comparative Physiology A.

[27]  Angela Wenning,et al.  Nephridial innervation in the leech Hirudo medicinalis L. , 1986, Cell and Tissue Research.

[28]  W. O. Friesen,et al.  Neuronal control of leech behavior , 2005, Progress in Neurobiology.

[29]  M. Kriebel Studies on cardiovascular physiology of tunicates. , 1968, The Biological bulletin.

[30]  Ronald L Calabrese,et al.  A central pattern generator producing alternative outputs: temporal pattern of premotor activity. , 2006, Journal of neurophysiology.