Computer-aided design of RF and microwave circuits and systems

The history of RF and microwave computer-aided engineering is documented in the annals of the IEEE Microwave Theory and Techniques Society. The era began with elaborate analytically based models of microwave components and simple computer-aided techniques to cascade, cascode, and otherwise connect linear component models to obtain the responses of linear microwave circuits. Development has become rapid with computer-oriented microwave practices addressing complex geometries and with the ability to globally model and optimize large circuits. The pursuit of accurate models of active devices and of passive components continues to be a key activity.

[1]  Jiri Vlach,et al.  A piecewise harmonic balance technique for determination of periodic response of nonlinear systems , 1976 .

[2]  C. Snowden Semiconductor Device Modelling , 1988 .

[3]  A. Wexler Solution of Waveguide Discontinuities by Modal Analysis , 1967 .

[4]  A. Materka,et al.  Compact DC model of GaAs FETs for large-signal computer calculation , 1983, IEEE Journal of Solid-State Circuits.

[5]  K. C. Gupta,et al.  Emerging trends in millimeter-wave CAD , 1998 .

[6]  P. Khan,et al.  Theoretical and Experimental Analysis of a Waveguide Mounting Structure , 1971 .

[7]  R. M. Barrett Microwave Printed Circuits - A Historical Survey , 1955 .

[8]  John W. Bandler,et al.  A unified theory for frequency-domain simulation and sensitivity analysis of linear and nonlinear circuits , 1988 .

[9]  Thomas J. Brazil,et al.  A scalable general-purpose model for microwave FETs including DC/AC dispersion effects , 1997 .

[10]  R. J. Trew MESFET models for microwave CAD applications , 1991 .

[11]  John W. Bandler,et al.  Circuit optimization: the state of the art , 1988 .

[12]  K. S. Kundert,et al.  Introduction to RF simulation and its application , 1998, Proceedings of the 1998 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.98CH36198).

[13]  R.A. Pucel,et al.  GaAs FET device and circuit simulation in SPICE , 1987, IEEE Transactions on Electron Devices.

[14]  Robert J. Trew,et al.  A large-signal, analytic model for the GaAs MESFET , 1988 .

[15]  Robert W. Dutton,et al.  Numerical small-signal AC modeling of deep-level-trap related frequency-dependent output conductance and capacitance for GaAs MESFET's on semi-insulating substrates , 1991 .

[16]  Nathan Marcuvitz Waveguide Handbook , 1951 .

[17]  F. H. Branin,et al.  Computer methods of network analysis , 1967, DAC.

[18]  Christopher M. Snowden,et al.  Nonlinear modeling of power FETs and HBTs , 1996 .

[19]  Christopher M. Snowden,et al.  Quasi-two-dimensional MESFET simulations for CAD , 1989 .

[20]  Mauro Mongiardo,et al.  A review of artificial neural networks applications in microwave computer-aided design , 1999 .

[21]  M. Mongiardo,et al.  New efficient full wave optimization of microwave circuits by the adjoint network method , 1993, IEEE Microwave and Guided Wave Letters.

[22]  John W. Bandler,et al.  Integrated Approach to Microwave Design , 1976 .

[23]  Peter H. Ladbrooke,et al.  MMIC Design GaAs FETs and HEMTs , 1989 .

[24]  A. Wexler Computation of Electromagnetic Fields , 1969 .

[25]  R.J. Wenzel,et al.  Fast analysis and optimization of combline filters using FEM , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[26]  H. C. Poon,et al.  An integral charge control model of bipolar transistors , 1970, Bell Syst. Tech. J..

[27]  H. Zirath,et al.  A new empirical nonlinear model for HEMT and MESFET devices , 1992 .

[28]  Daniël De Zutter,et al.  A new method for obtaining the shape sensitivities of planar microstrip structures by a full-wave analysis , 1996 .

[29]  Michael B. Steer,et al.  Computer‐aided analysis of nonlinear microwave circuits using frequency‐domain nonlinear analysis techniques: The state of the art , 1991 .

[30]  K. S. Kundert Introduction to RF simulation and its application , 1999 .

[31]  P. Silvester A General High-Order Finite-Element Analysis Program Waveguide , 1969 .

[32]  Jeffrey Frey,et al.  AN EFFICIENT TECHNIQUE FOR TWO‐DIMENSIONAL SIMULATION OF VELOCITY OVERSHOOT EFFECTS IN Si AND GaAs DEVICES , 1982 .

[33]  W.L. Engl,et al.  Device modeling , 1983, Proceedings of the IEEE.

[34]  Jr. F. Branin,et al.  Network sensitivity and noise analysis simplified , 1973 .

[35]  R. Rohrer,et al.  Automated Network Design-The Frequency-Domain Case , 1969 .

[36]  M. Steer,et al.  Nonlinear circuit analysis using the method of harmonic balance—A review of the art. Part I. Introductory concepts , 1991 .

[37]  Ronald A. Rohrer,et al.  Fully automated network design by digital computer: Preliminary considerations , 1967 .

[38]  R. F. Harrington,et al.  An Electromagnetic Time-Harmonic Analysis of Shielded Microstrip Circuits , 1987 .

[39]  A. A. Oliner,et al.  Equivalent Circuits for Discontinuities in Balanced Strip Transmission Line , 1955 .

[40]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[41]  John W. Bandler,et al.  FAST gradient based yield optimization of nonlinear circuits , 1990 .

[42]  John W. Bandler,et al.  Current Trends in Network Optimization , 1970 .

[43]  A. I. Khalil,et al.  Global modeling of spatially distributed microwave and millimeter-wave systems , 1999 .

[44]  A. Neri,et al.  State of the art and present trends in nonlinear microwave CAD techniques , 1988 .

[45]  R. Harrington Matrix methods for field problems , 1967 .

[46]  Michael J. Howes,et al.  A HEMT physical model for CAD , 1995 .

[47]  R. Zuleeg,et al.  Voltage-current characteristics of GaAs J-FET's in the hot electron range☆ , 1970 .

[48]  Roger D. Pollard,et al.  A large-signal physical HEMT model , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[49]  J. Choma,et al.  Large signal modeling of HBT's including self-heating and transit time effects , 1992 .

[50]  John Michael Golio The RF and Microwave Hanbook , 2001 .

[51]  Christopher M. Snowden,et al.  Large-signal microwave characterization of AlGaAs/GaAs HBT's based on a physics-based electrothermal model , 1997 .

[52]  S. H. Chen,et al.  Electromagnetic optimization exploiting aggressive space mapping , 1995 .

[53]  Jaijeet Roychowdhury,et al.  Efficient multi-tone distortion analysis of analog integrated circuits , 1995, Proceedings of the IEEE 1995 Custom Integrated Circuits Conference.

[54]  Young-Seek Chung,et al.  Optimal shape design of microwave device using FDTD and design sensitivity analysis , 2000, IMS 2000.

[55]  Gabor C. Temes,et al.  Computer-aided network optimization the state-of-the-art , 1967 .

[56]  R. Collin Foundations for microwave engineering , 1966 .

[57]  Qi-Jun Zhang,et al.  Neural Networks for RF and Microwave Design , 2000 .

[58]  Wolfgang J. R. Hoefer,et al.  The Transmission-Line Matrix Method--Theory and Applications , 1985 .

[59]  David E. Root,et al.  Technology Independent Large Signal Non Quasi-Static FET Models by Direct Construction from Automatically Characterized Device Data , 1991, 1991 21st European Microwave Conference.

[60]  A. Gagnoud,et al.  IEEE Trans. Magnetics , 1985 .

[61]  W. Curtice A MESFET Model for Use in the Design of GaAs Integrated Circuits , 1980 .

[62]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[63]  R. H. Jansen,et al.  A comprehensive CAD approach to the design of MMICs up to mm-wave frequencies , 1988 .