More asymptotic safety guaranteed

We study interacting fixed points and phase diagrams of simple and semi-simple quantum field theories in four dimensions involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semi-simple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semi-simple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed.

[1]  de Calan C,et al.  Constructing the three-dimensional Gross-Neveu model with a large number of flavor components. , 1991, Physical review letters.

[2]  P. Weisz,et al.  Scaling laws and triviality bounds in the lattice ϕ4 theory (III). n-component model , 1989 .

[3]  W. E. Caswell Asymptotic Behavior of Non-Abelian Gauge Theories to Two-Loop Order , 1974 .

[4]  Daniel F. Litim,et al.  Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  A. Strumia,et al.  Higgs mass implications on the stability of the electroweak vacuum , 2011, 1112.3022.

[6]  N. Chang Eigenvalue conditions and asymptotic freedom for Higgs-scalar gauge theories , 1974 .

[7]  Gawedzki,et al.  Exact renormalization for the Gross-Neveu model of quantum fields. , 1985, Physical review letters.

[8]  M. T. Vaughn,et al.  Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization , 1983 .

[9]  Kupiainen,et al.  Renormalizing the nonrenormalizable. , 1985, Physical review letters.

[10]  D. Litim,et al.  Asymptotic Safety Guaranteed in Supersymmetry. , 2017, Physical review letters.

[11]  Jan M. Pawlowski,et al.  Fixed points and infrared completion of quantum gravity , 2012, 1209.4038.

[12]  Michael E. Peskin,et al.  Critical point behavior of the Wilson loop , 1980 .

[13]  TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.

[14]  Gerard 't Hooft,et al.  Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking , 1979 .

[15]  D. Kazakov,et al.  Preprint typeset in JHEP style- HYPER VERSION Renormalizable 1/Nf Expansion for Field Theories in Extra Dimensions , 2022 .

[16]  T. Banks,et al.  On the phase structure of vector-like gauge theories with massless fermions , 1982 .

[17]  A. J. Paterson Coleman-Weinberg symmetry breaking in the chiral SU( n) × SU( n) linear σ model , 1981 .

[18]  L. Smolin A fixed point for quantum gravity , 1982 .

[19]  Daniel F Litim Fixed points of quantum gravity. , 2004, Physical review letters.

[20]  Raymond Gastmans,et al.  Quantum gravity near two dimensions , 1978 .

[21]  M. Duff,et al.  Quantum gravity in 2 + ε dimensions , 1978 .

[22]  Frank Saueressig,et al.  Quantum gravity on foliated spacetimes: Asymptotically safe and sound , 2016, 1609.04813.

[23]  Jan M. Pawlowski,et al.  Asymptotic freedom of Yang–Mills theory with gravity , 2011, 1101.5552.

[24]  Alessandro Strumia,et al.  Investigating the near-criticality of the Higgs boson , 2013, 1307.3536.

[25]  D. Litim,et al.  UV conformal window for asymptotic safety , 2017, 1710.07615.

[26]  B. Gravitons,et al.  Asymptotic safety guaranteed , 2014 .

[27]  E. Tomboulis Renormalizability and asymptotic freedom in quantum gravity , 1980 .

[28]  Mingxing Luo,et al.  Two-loop renormalization group equations in general gauge field theories , 2002, hep-ph/0211440.

[29]  R. Percacci,et al.  Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.

[30]  D. Litim,et al.  Asymptotic safety of gauge theories beyond marginal interactions , 2017 .

[31]  G. Veneziano U(1) without instantons , 1979 .

[32]  Kamila Kowalska,et al.  Directions for model building from asymptotic safety , 2017, 1702.01727.

[33]  W. Bardeen,et al.  Spontaneous Breaking of Scale Invariance and the Ultraviolet Fixed Point in O($n$) Symmetric $(phi^{6}$ in Three-Dimensions) Theory , 1984 .

[34]  Christoph Rahmede,et al.  Further evidence for asymptotic safety of quantum gravity , 2014, 1410.4815.

[35]  Joseph Polchinski,et al.  Scale and Conformal Invariance in Quantum Field Theory , 1988 .

[36]  P. Weisz,et al.  Scaling laws and triviality bounds in the lattice φ4 theory. II: One-component model in the phase with spontaneous symmetry breaking , 1988 .

[37]  Jan M. Pawlowski,et al.  Asymptotic safety of gravity-matter systems , 2015, 1510.07018.

[38]  P. Cai,et al.  Reliable Perturbative Results for Strong Interactions ? , 2011 .

[39]  P. Pascual,et al.  The 1/NF expansion of the γ and β functions in Q.E.D. , 1984 .

[40]  F. Wilczek,et al.  Ultraviolet Behavior of Non-Abelian Gauge Theories , 1973 .

[41]  E. Tomboulis 1/N Expansion and Renormalization in Quantum Gravity , 1977 .

[42]  D. Litim Fixed points of quantum gravity and the renormalisation group , 2008, 0810.3675.

[43]  L. Debbio The conformal window on the lattice , 2011, 1102.4066.

[44]  J. Polchinski,et al.  The a-theorem and the asymptotics of 4D quantum field theory , 2012, 1204.5221.

[45]  M.Reuter Nonperturbative Evolution Equation for Quantum Gravity , 1996, hep-th/9605030.

[46]  B. Holdom,et al.  Large N flavor β-functions: A recap , 2010, 1006.2119.

[47]  M. T. Vaughn,et al.  Two-loop renormalization group equations in a general quantum field theory: (III). Scalar quartic couplings , 1984 .

[48]  D. Litim,et al.  Vacuum stability of asymptotically safe gauge-Yukawa theories , 2015, 1501.03061.

[49]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[50]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[51]  M. T. Vaughn,et al.  Two-loop renormalization group equations in a general quantum field theory (II). Yukawa couplings , 1984 .

[52]  K. Jansen,et al.  The triviality bound of the four-component Φ4 model , 1987 .

[53]  D. J. Callaway Triviality pursuit: Can elementary scalar particles exist? , 1988 .

[54]  Daniel F. Litim,et al.  Theorems for asymptotic safety of gauge theories , 2016, 1608.00519.

[55]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[56]  D. Gross,et al.  Price of asymptotic freedom , 1973 .