On the Maximum Crossing Number

Research about crossings is typically about minimization. In this paper, we consider \emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.

[1]  Oleg Verbitsky,et al.  On the obfuscation complexity of planar graphs , 2007, Theor. Comput. Sci..

[2]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[3]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[4]  Matthew P. Johnson,et al.  Approximating the Maximum Rectilinear Crossing Number , 2016, COCOON.

[5]  Hiroshi Nagamochi,et al.  An Improved Bound on the One-Sided Minimum Crossing Number in Two-Layered Drawings , 2005, Discret. Comput. Geom..

[6]  David S. Johnson,et al.  Crossing Number is NP-Complete , 1983 .

[7]  Matthew Alpert,et al.  The Maximum of the Maximum Rectilinear Crossing Numbers of d-Regular Graphs of Order n , 2008, Electron. J. Comb..

[8]  P. Berman,et al.  On Some Tighter Inapproximability Results , 1998, Electron. Colloquium Comput. Complex..

[9]  Cesim Erten,et al.  Crossing minimization in weighted bipartite graphs , 2007, J. Discrete Algorithms.

[10]  László Lovász,et al.  On Conway's Thrackle Conjecture , 1995, SCG '95.

[11]  Michael J. Pelsmajer,et al.  Crossing Number of Graphs with Rotation Systems , 2007, Graph Drawing.

[12]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[13]  Farhad Shahrokhi,et al.  On Bipartite Drawings and the Linear Arrangement Problem , 2001, SIAM J. Comput..

[14]  M. Schaefer The Graph Crossing Number and its Variants: A Survey , 2013 .

[15]  D. J. Kleitman,et al.  Maximal Rectilinear Crossing of Cycles , 1977 .

[16]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[17]  Peter Eades,et al.  Edge crossings in drawings of bipartite graphs , 1994, Algorithmica.

[18]  E. Steinitz Über die Maximalzahl der Doppelpunkte bei ebenen Polygonen von gerader Seitenzahl , 1923 .

[19]  Oleg Verbitsky,et al.  Obfuscated Drawings of Planar Graphs , 2008, ArXiv.

[20]  B. Grünbaum Arrangements and Spreads , 1972 .