On Pósa's Conjecture for Random Graphs

The famous Posa conjecture states that every graph of minimum degree at least $2n/3$ contains the square of a Hamilton cycle. This has been proved for large $n$ by Komlos, Sarkozy, and Szemeredi. Here we prove that if $p \ge n^{-1/2+\varepsilon}$, then asymptotically almost surely, the binomial random graph $G_{n,p}$ contains the square of a Hamilton cycle. This provides an “approximate threshold” for the property in the sense that the result fails to hold if $p\le n^{-1/2}$.

[1]  Béla Bollobás,et al.  Random Graphs , 1985 .

[2]  Vojtech Rödl,et al.  Perfect matchings in large uniform hypergraphs with large minimum collective degree , 2009, J. Comb. Theory, Ser. A.

[3]  Michael Krivelevich,et al.  Sharp threshold for the appearance of certain spanning trees in random graphs , 2012, Random Struct. Algorithms.

[4]  Michael Krivelevich,et al.  Triangle Factors in Random Graphs , 1997, Combinatorics, Probability and Computing.

[5]  C. V. Eynden,et al.  A proof of a conjecture of Erdös , 1969 .

[6]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[7]  János Komlós,et al.  Limit distribution for the existence of hamiltonian cycles in a random graph , 1983, Discret. Math..

[8]  Daniela Kühn,et al.  The minimum degree threshold for perfect graph packings , 2009, Comb..

[9]  Domingos Dellamonica,et al.  Universality of random graphs , 2008, SODA '08.

[10]  B. Kreuter,et al.  Threshold functions for asymmetric Ramsey properties with respect to vertex colorings , 1996, Random Struct. Algorithms.

[11]  Michael Krivelevich Embedding Spanning Trees in Random Graphs , 2010, SIAM J. Discret. Math..

[12]  B. Bollobás,et al.  An algorithm for finding hamilton paths and cycles in random graphs , 1987 .

[13]  Endre Szemerédi,et al.  Proof of the Seymour conjecture for large graphs , 1998 .

[14]  D. Kuhn,et al.  Surveys in Combinatorics 2009: Embedding large subgraphs into dense graphs , 2009, 0901.3541.

[15]  J. Kahn,et al.  Factors in random graphs , 2008 .

[16]  O L I V E R R I O R D A N,et al.  Spanning Subgraphs of Random Graphs , 1993 .

[17]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[18]  J. Komlos,et al.  First Occurrence of Hamilton Cycles in Random Graphs , 1985 .

[19]  Hal A. Kierstead,et al.  Pósa's conjecture for graphs of order at least 2 × 108 , 2011, Random Struct. Algorithms.

[20]  James E. Arnold A solution of a problem of Steenrod for cyclic groups of prime order , 1977 .