Regional Interactive Image Segmentation Networks

The interactive image segmentation model allows users to iteratively add new inputs for refinement until a satisfactory result is finally obtained. Therefore, an ideal interactive segmentation model should learn to capture the user's intention with minimal interaction. However, existing models fail to fully utilize the valuable user input information in the segmentation refinement process and thus offer an unsatisfactory user experience. In order to fully exploit the user-provided information, we propose a new deep framework, called Regional Interactive Segmentation Network (RIS-Net), to expand the field-of-view of the given inputs to capture the local regional information surrounding them for local refinement. Additionally, RIS-Net adopts multiscale global contextual information to augment each local region for improving feature representation. We also introduce click discount factors to develop a novel optimization strategy for more effective end-to-end training. Comprehensive evaluations on four challenging datasets well demonstrate the superiority of the proposed RIS-Net over other state-of-the-art approaches.

[1]  Olga Veksler,et al.  Star Shape Prior for Graph-Cut Image Segmentation , 2008, ECCV.

[2]  Andrew Blake,et al.  Geodesic star convexity for interactive image segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[4]  Olga Veksler,et al.  Semiautomatic segmentation with compact shape prior , 2009, Image Vis. Comput..

[5]  Guillermo Sapiro,et al.  Geodesic Matting: A Framework for Fast Interactive Image and Video Segmentation and Matting , 2009, International Journal of Computer Vision.

[6]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[7]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[9]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[10]  Scott Cohen,et al.  Geodesic graph cut for interactive image segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[12]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  William A. Barrett,et al.  Intelligent scissors for image composition , 1995, SIGGRAPH.

[14]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[16]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[17]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[18]  Yunchao Wei,et al.  STC: A Simple to Complex Framework for Weakly-Supervised Semantic Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Vladimir Vezhnevets,et al.  “GrowCut” - Interactive Multi-Label N-D Image Segmentation By Cellular Automata , 2005 .

[20]  Jian Sun,et al.  Lazy snapping , 2004, SIGGRAPH 2004.

[21]  Ning Xu,et al.  Deep Interactive Object Selection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Pushmeet Kohli,et al.  User-Centric Learning and Evaluation of Interactive Segmentation Systems , 2012, International Journal of Computer Vision.

[23]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Yao Zhao,et al.  Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[26]  Tao Zhang,et al.  Interactive graph cut based segmentation with shape priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  Martin Jägersand,et al.  An interactive graph cut method for brain tumor segmentation , 2009, 2009 Workshop on Applications of Computer Vision (WACV).

[28]  Andrew Blake,et al.  GeoS: Geodesic Image Segmentation , 2008, ECCV.

[29]  Noel E. O'Connor,et al.  A comparative evaluation of interactive segmentation algorithms , 2010, Pattern Recognit..