A strong bimetal-support interaction in ethanol steam reforming

[1]  M. Willinger,et al.  Dynamic interplay between metal nanoparticles and oxide support under redox conditions , 2022, Science.

[2]  X. Bao,et al.  Overturning CO2 Hydrogenation Selectivity with High Activity via Reaction-Induced Strong Metal-Support Interactions. , 2022, Journal of the American Chemical Society.

[3]  P. Petrik,et al.  Large-area nanoengineering of graphene corrugations for visible-frequency graphene plasmons , 2021, Nature Nanotechnology.

[4]  Jinlong Gong,et al.  Role of Fe Species of Ni-Based Catalysts for Efficient Low-Temperature Ethanol Steam Reforming , 2021, JACS Au.

[5]  Ze Zhang,et al.  Facet-Dependent Oxidative Strong Metal-Support Interactions of Pd-TiO2 via In Situ TEM. , 2021, Angewandte Chemie.

[6]  G. Somorjai,et al.  Insights into the Mechanism of Methanol Steam Reforming Tandem Reaction over CeO2 Supported Single-Site Catalysts. , 2021, Journal of the American Chemical Society.

[7]  Ze Zhang,et al.  Elucidation of Active Sites for CH4 Catalytic Oxidation over Pd/CeO2 Via Tailoring Metal–Support Interactions , 2021 .

[8]  Simuck F. Yuk,et al.  Environment of Metal-O-Fe Bonds Enabling High Activity in CO2 Reduction on Single Metal Atoms and on Supported Nanoparticles. , 2021, Journal of the American Chemical Society.

[9]  Jinlong Gong,et al.  Tunable Metal-Oxide Interaction with Balanced Ni0/Ni2+ Sites of NixMg1−xO for Ethanol Steam Reforming , 2021 .

[10]  L. Rossi,et al.  Optimizing Active Sites for High CO Selectivity during CO2 Hydrogenation over Supported Nickel Catalysts. , 2021, Journal of the American Chemical Society.

[11]  Joshua L. Vincent,et al.  Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction , 2021, Nature Communications.

[12]  Jin-an Shi,et al.  A stable low-temperature H2-production catalyst by crowding Pt on α-MoC , 2021, Nature.

[13]  G. Rupprechter,et al.  Interplay between CO Disproportionation and Oxidation: On the Origin of the CO Reaction Onset on Atomic Layer Deposition-Grown Pt/ZrO2 Model Catalysts , 2020, ACS catalysis.

[14]  Tao Zhang,et al.  Ru/TiO2 Catalysts with Size-Dependent Metal/Support Interaction for Tunable Reactivity in Fischer–Tropsch Synthesis , 2020 .

[15]  Ke R. Yang,et al.  In situ Identification of Reaction Intermediates and Mechanistic Understandings of Methane Oxidation over Hematite: A Combined Experimental and Theoretical Study. , 2020, Journal of the American Chemical Society.

[16]  Nongnuch Artrith,et al.  Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning , 2020, 2008.01243.

[17]  Tao Zhang,et al.  Controlling CO2 hydrogenation selectivity by metal-support electron transfer under reaction conditions. , 2020, Angewandte Chemie.

[18]  Chunhua Yan,et al.  The intrinsically active surface in a Pt/γ-Mo2N catalyst for the water-gas shift reaction: Molybdenum nitride or molybdenum oxide? , 2020, Journal of the American Chemical Society.

[19]  M. Willinger,et al.  The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction , 2020, Nature Communications.

[20]  H. Tao,et al.  Tuning reactivity of Fischer–Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts , 2020, Nature Communications.

[21]  E. Hensen,et al.  Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts , 2020, Nature Catalysis.

[22]  Jun Luo,et al.  Strong Metal-Support Interactions between Pt Single Atoms and TiO2. , 2020, Angewandte Chemie.

[23]  Qiang Zhang,et al.  Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. , 2020, Angewandte Chemie.

[24]  Zhiqiang Niu,et al.  Surface and Interface Control in Nanoparticle Catalysis. , 2019, Chemical reviews.

[25]  D. Su,et al.  Wet-Chemistry Strong Metal-Support Interactions in Titania-Supported Au Catalysts. , 2019, Journal of the American Chemical Society.

[26]  K. D. de Jong,et al.  Activity enhancement of cobalt catalysts by tuning metal-support interactions , 2018, Nature communications.

[27]  Matthew T. Darby,et al.  Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. , 2018, Nature chemistry.

[28]  Xiaodong Wang,et al.  Identifying Size Effects of Pt as Single Atoms and Nanoparticles Supported on FeOx for the Water-Gas Shift Reaction , 2018 .

[29]  Weixin Huang,et al.  The most active Cu facet for low-temperature water gas shift reaction , 2017, Nature Communications.

[30]  Lili Lin,et al.  Tuning the Selectivity of Catalytic Carbon Dioxide Hydrogenation over Iridium/Cerium Oxide Catalysts with a Strong Metal-Support Interaction. , 2017, Angewandte Chemie.

[31]  L. Gu,et al.  Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction , 2017, Science.

[32]  Lili Lin,et al.  Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts , 2017, Nature.

[33]  A. Urakawa,et al.  CO2 -to-Methanol Hydrogenation on Zirconia-Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal-Support Interface. , 2017, Angewandte Chemie.

[34]  Xiaoqing Pan,et al.  Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. , 2017, Nature chemistry.

[35]  M. Castaldi,et al.  Mechanistic Insights into Catalytic Ethanol Steam Reforming Using Isotope-Labeled Reactants. , 2016, Angewandte Chemie.

[36]  D. Zanchet,et al.  Toward Understanding Metal-Catalyzed Ethanol Reforming , 2015 .

[37]  Ping Liu,et al.  Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2 , 2014, Science.

[38]  G. Jacobs,et al.  Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. , 2012, Chemical reviews.

[39]  S. Tsang,et al.  Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature , 2012, Nature Communications.

[40]  Feng Liu,et al.  Highly Ordered, Millimeter‐Scale, Continuous, Single‐Crystalline Graphene Monolayer Formed on Ru (0001) , 2009 .

[41]  S. Overbury,et al.  Structural investigation of au catalysts on TiO2-SiO2 supports : Nature of the local structure of Ti and Au atoms by EXAFS and XANES , 2007 .

[42]  X. Verykios,et al.  Renewable Hydrogen from Ethanol by Autothermal Reforming , 2004, Science.

[43]  S. C. Fung,et al.  Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide , 1978 .