Dilute neutron star matter from neural-network quantum states

,

[1]  M. Hjorth-Jensen,et al.  Solving the nuclear pairing model with neural network quantum states. , 2022, Physical review. E.

[2]  P. Zhao,et al.  A consistent description of the relativistic effects and three-body interactions in atomic nuclei , 2022, Physics Letters B.

[3]  O. Benhar,et al.  Sensitivity of neutron star observations to three-nucleon forces , 2022, Physical Review D.

[4]  R. Wiringa,et al.  Benchmark calculations of infinite neutron matter with realistic two- and three-nucleon potentials , 2022, Physical Review C.

[5]  K. Schmidt,et al.  The 1S0 Pairing Gap in Neutron Matter , 2022, Condensed Matter.

[6]  J. Stokes,et al.  Fermionic wave functions from neural-network constrained hidden states , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Jianfeng Lu,et al.  Neural-Network Quantum States for Periodic Systems in Continuous Space , 2021, 2112.11957.

[8]  F. Sammarruca,et al.  Overview of symmetric nuclear matter properties from chiral interactions up to fourth order of the chiral expansion , 2021, Physical Review C.

[9]  P. Senger Probing Dense Nuclear Matter in the Laboratory: Experiments at FAIR and NICA , 2021, Universe.

[10]  F. Nowacki,et al.  The neutron-rich edge of the nuclear landscape. Experiment and theory , 2021, 2104.06238.

[11]  G. Carleo,et al.  Variational Monte Carlo Calculations of A≤4 Nuclei with an Artificial Neural-Network Correlator Ansatz. , 2020, Physical review letters.

[12]  Nicholas,et al.  Nuclei with Up to A = 6 Nucleons with Artificial Neural Network Wave Functions , 2021 .

[13]  C. Forss'en,et al.  Accurate bulk properties of nuclei from A=2 to ∞ from potentials with Δ isobars , 2020, 2006.16774.

[14]  O. Benhar,et al.  Tidal deformation of neutron stars from microscopic models of nuclear dynamics , 2020, Physical Review C.

[15]  D. Lonardoni Nuclear and neutron-star matter from local chiral interactions , 2019, Physical Review Research.

[16]  J. Keeble,et al.  Machine learning the deuteron , 2019, Physics Letters B.

[17]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[18]  F. Noé,et al.  Deep-neural-network solution of the electronic Schrödinger equation , 2019, Nature Chemistry.

[19]  R. Wiringa,et al.  Benchmark calculations of pure neutron matter with realistic nucleon-nucleon interactions , 2019, Physical Review C.

[20]  David Pfau,et al.  Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks , 2019, Physical Review Research.

[21]  Michael A. Osborne,et al.  On the Limitations of Representing Functions on Sets , 2019, ICML.

[22]  M. Viviani,et al.  Correlations imposed by the unitary limit between few-nucleon systems, nuclear matter, and neutron stars. , 2018, Physical review letters.

[23]  S. C. Pieper,et al.  Light-Nuclei Spectra from Chiral Dynamics. , 2017, Physical review letters.

[24]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[25]  O. Benhar,et al.  Superfluid Gap in Neutron Matter from a Microscopic Effective Interaction , 2017, 1705.06607.

[26]  Alexander J. Smola,et al.  Deep Sets , 2017, 1703.06114.

[27]  S. König,et al.  Nuclear Physics Around the Unitarity Limit. , 2016, Physical review letters.

[28]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[29]  A. Schwenk,et al.  Neutron matter from chiral two- and three-nucleon calculations up to N$^3$LO , 2016, 1608.05615.

[30]  S. C. Pieper,et al.  Quantum Monte Carlo methods for nuclear physics , 2014, 1412.3081.

[31]  D. R. Entem,et al.  Chiral effective field theory and nuclear forces , 2011, 1105.2919.

[32]  J. Lattimer,et al.  Rapid cooling of the neutron star in Cassiopeia A triggered by neutron superfluidity in dense matter. , 2010, Physical review letters.

[33]  K. Schmidt,et al.  Equation of state of low-density neutron matter, and the 1S0 pairing gap , 2009, 0907.1588.

[34]  K. Schmidt,et al.  Equation of state of superfluid neutron matter and the calculation of the 1S0 pairing gap. , 2008, Physical review letters.

[35]  N. Sandulescu,et al.  Nuclear superfluidity and cooling time of neutron star crusts , 2007, nucl-th/0703064.

[36]  K. Schmidt,et al.  Pfaffian pairing wave functions in electronic-structure quantum Monte Carlo simulations. , 2005, Physical review letters.

[37]  C. Pethick,et al.  Neutron Star Cooling , 2004, astro-ph/0409751.

[38]  K. Schmidt,et al.  Spin-orbit induced backflow in neutron matter with auxiliary field diffusion Monte Carlo method , 2003, nucl-th/0304042.

[39]  M. Hjorth-Jensen,et al.  Pairing in Nuclear Systems: From Neutron Stars to Finite Nuclei , 2002, nucl-th/0210033.

[40]  H. Heiselberg,et al.  PHASES OF DENSE MATTER IN NEUTRON STARS , 1999, astro-ph/9910200.

[41]  K. Schmidt,et al.  A QUANTUM MONTE CARLO METHOD FOR NUCLEON SYSTEMS , 1999 .

[42]  V. Pandharipande,et al.  Equation of state of nucleon matter and neutron star structure , 1998, nucl-th/9804027.

[43]  Carlson,et al.  Quantum Monte Carlo calculations of A <= 6 nuclei. , 1995, Physical review letters.

[44]  R. Wiringa,et al.  Accurate nucleon-nucleon potential with charge-independence breaking. , 1995, Physical review. C, Nuclear physics.

[45]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J. Negele,et al.  Neutron star matter at sub-nuclear densities , 1973 .

[47]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.